美文网首页并发
读写锁ReadWriteLock源码分析

读写锁ReadWriteLock源码分析

作者: loveFXX | 来源:发表于2019-12-18 23:17 被阅读0次

    示例代码:

    public class ReadWriteLockTest {
        ReadWriteLock readWriteLock = new ReentrantReadWriteLock(  );
        private Integer data=0;
    
        public void read() {
            readWriteLock.readLock().lock();
            System.out.println(Thread.currentThread().getName()+"  read");
            try {
                Thread.sleep( (long) (Math.random()*1000) );
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
            System.out.println(Thread.currentThread().getName()+"  read  over");
            readWriteLock.readLock().unlock();
        }
    
        public void write(Integer data){
            readWriteLock.writeLock().lock();
            System.out.println(Thread.currentThread().getName()+"  write");
            try {
                Thread.sleep( (long) (Math.random()*1000) );
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
            this.data=data;
            System.out.println(Thread.currentThread().getName()+"  write  over");
            readWriteLock.writeLock().unlock();
        }
    
        public static void main(String[] args) throws Exception {
    
            final ReadWriteLockTest test = new ReadWriteLockTest();
            for (int i = 0; i <10 ; i++) {
                new Thread( new Runnable() {
                    @Override
                    public void run() {
                        test.read();
                    }
                } ).start();
                new Thread( new Runnable() {
                    @Override
                    public void run() {
                        test.write(new Random().nextInt( 10 ) );
                    }
                } ).start();
            }
        }
    
    
    }
    

    打印输出:


    image.png

    可以看出,读锁是共享锁。一个线程在读没结束时,其他读线程也可以读。

    ReadWriteLock

    public interface ReadWriteLock {
        Lock readLock();
        Lock writeLock();
    }
    

    读写锁ReadWriteLock接口包含读锁(共享锁)和写锁(排它锁)
    锁升级:由读锁升级为写锁(会造成死锁,所以ReadWriteLock实现类不支持)
    锁降级:由写锁降级为读锁

    ReentrantReadWriteLock

    package java.util.concurrent.locks;
    public class ReentrantReadWriteLock
            implements ReadWriteLock, java.io.Serializable {
        private static final long serialVersionUID = -6992448646407690164L;
        /** Inner class providing readlock */
        private final ReentrantReadWriteLock.ReadLock readerLock;
        /** Inner class providing writelock */
        private final ReentrantReadWriteLock.WriteLock writerLock;
        /** Performs all synchronization mechanics */
        final Sync sync;
    
        public ReentrantReadWriteLock() {
            this(false);
        }
    
        /**
         * Creates a new {@code ReentrantReadWriteLock} with
         * the given fairness policy.
         *
         * @param fair {@code true} if this lock should use a fair ordering policy
         */
        public ReentrantReadWriteLock(boolean fair) {
            sync = fair ? new FairSync() : new NonfairSync();
            readerLock = new ReadLock(this);
            writerLock = new WriteLock(this);
        }
    
        public ReentrantReadWriteLock.WriteLock writeLock() { return writerLock; }
        public ReentrantReadWriteLock.ReadLock  readLock()  { return readerLock; }
    
        /**
         * Synchronization implementation for ReentrantReadWriteLock.
         * Subclassed into fair and nonfair versions.
         */
        abstract static class Sync extends AbstractQueuedSynchronizer {
            private static final long serialVersionUID = 6317671515068378041L;
    
            /*
             * Read vs write count extraction constants and functions.
             * Lock state is logically divided into two unsigned shorts:
             * The lower one representing the exclusive (writer) lock hold count,
             * and the upper the shared (reader) hold count.
             */
    
            static final int SHARED_SHIFT   = 16;
            static final int SHARED_UNIT    = (1 << SHARED_SHIFT);
            static final int MAX_COUNT      = (1 << SHARED_SHIFT) - 1;
            static final int EXCLUSIVE_MASK = (1 << SHARED_SHIFT) - 1;
    
            /** Returns the number of shared holds represented in count  */
            static int sharedCount(int c)    { return c >>> SHARED_SHIFT; }
            /** Returns the number of exclusive holds represented in count  */
            static int exclusiveCount(int c) { return c & EXCLUSIVE_MASK; }
    
    
            static final class HoldCounter {
                int count = 0;
                // Use id, not reference, to avoid garbage retention
                final long tid = getThreadId(Thread.currentThread());
            }
    
         
            static final class ThreadLocalHoldCounter
                extends ThreadLocal<HoldCounter> {
                public HoldCounter initialValue() {
                    return new HoldCounter();
                }
            }
    
          
            private transient ThreadLocalHoldCounter readHolds;
    
         
            private transient HoldCounter cachedHoldCounter;
    
          
            private transient Thread firstReader = null;
            private transient int firstReaderHoldCount;
    
            Sync() {
                readHolds = new ThreadLocalHoldCounter();
                setState(getState()); // ensures visibility of readHolds
            }
    
           
          
            abstract boolean readerShouldBlock();
    
           
            abstract boolean writerShouldBlock();
    
          
    
            protected final boolean tryRelease(int releases) {
                if (!isHeldExclusively())
                    throw new IllegalMonitorStateException();
                int nextc = getState() - releases;
                boolean free = exclusiveCount(nextc) == 0;
                if (free)
                    setExclusiveOwnerThread(null);
                setState(nextc);
                return free;
            }
    
            protected final boolean tryAcquire(int acquires) {
             
                Thread current = Thread.currentThread();
                int c = getState();
                int w = exclusiveCount(c);
                if (c != 0) {
                    // (Note: if c != 0 and w == 0 then shared count != 0)
                    if (w == 0 || current != getExclusiveOwnerThread())
                        return false;
                    if (w + exclusiveCount(acquires) > MAX_COUNT)
                        throw new Error("Maximum lock count exceeded");
                    // Reentrant acquire
                    setState(c + acquires);
                    return true;
                }
                if (writerShouldBlock() ||
                    !compareAndSetState(c, c + acquires))
                    return false;
                setExclusiveOwnerThread(current);
                return true;
            }
    
            protected final boolean tryReleaseShared(int unused) {
                Thread current = Thread.currentThread();
                if (firstReader == current) {
                    // assert firstReaderHoldCount > 0;
                    if (firstReaderHoldCount == 1)
                        firstReader = null;
                    else
                        firstReaderHoldCount--;
                } else {
                    HoldCounter rh = cachedHoldCounter;
                    if (rh == null || rh.tid != getThreadId(current))
                        rh = readHolds.get();
                    int count = rh.count;
                    if (count <= 1) {
                        readHolds.remove();
                        if (count <= 0)
                            throw unmatchedUnlockException();
                    }
                    --rh.count;
                }
                for (;;) {
                    int c = getState();
                    int nextc = c - SHARED_UNIT;
                    if (compareAndSetState(c, nextc))
                        // Releasing the read lock has no effect on readers,
                        // but it may allow waiting writers to proceed if
                        // both read and write locks are now free.
                        return nextc == 0;
                }
            }
    
            private IllegalMonitorStateException unmatchedUnlockException() {
                return new IllegalMonitorStateException(
                    "attempt to unlock read lock, not locked by current thread");
            }
    
            protected final int tryAcquireShared(int unused) {
            
                Thread current = Thread.currentThread();
                int c = getState();
                if (exclusiveCount(c) != 0 &&
                    getExclusiveOwnerThread() != current)
                    return -1;
                int r = sharedCount(c);
                if (!readerShouldBlock() &&
                    r < MAX_COUNT &&
                    compareAndSetState(c, c + SHARED_UNIT)) {
                    if (r == 0) {
                        firstReader = current;
                        firstReaderHoldCount = 1;
                    } else if (firstReader == current) {
                        firstReaderHoldCount++;
                    } else {
                        HoldCounter rh = cachedHoldCounter;
                        if (rh == null || rh.tid != getThreadId(current))
                            cachedHoldCounter = rh = readHolds.get();
                        else if (rh.count == 0)
                            readHolds.set(rh);
                        rh.count++;
                    }
                    return 1;
                }
                return fullTryAcquireShared(current);
            }
    
         
            final int fullTryAcquireShared(Thread current) {
               
                HoldCounter rh = null;
                for (;;) {
                    int c = getState();
                    if (exclusiveCount(c) != 0) {
                        if (getExclusiveOwnerThread() != current)
                            return -1;
                        // else we hold the exclusive lock; blocking here
                        // would cause deadlock.
                    } else if (readerShouldBlock()) {
                        // Make sure we're not acquiring read lock reentrantly
                        if (firstReader == current) {
                            // assert firstReaderHoldCount > 0;
                        } else {
                            if (rh == null) {
                                rh = cachedHoldCounter;
                                if (rh == null || rh.tid != getThreadId(current)) {
                                    rh = readHolds.get();
                                    if (rh.count == 0)
                                        readHolds.remove();
                                }
                            }
                            if (rh.count == 0)
                                return -1;
                        }
                    }
                    if (sharedCount(c) == MAX_COUNT)
                        throw new Error("Maximum lock count exceeded");
                    if (compareAndSetState(c, c + SHARED_UNIT)) {
                        if (sharedCount(c) == 0) {
                            firstReader = current;
                            firstReaderHoldCount = 1;
                        } else if (firstReader == current) {
                            firstReaderHoldCount++;
                        } else {
                            if (rh == null)
                                rh = cachedHoldCounter;
                            if (rh == null || rh.tid != getThreadId(current))
                                rh = readHolds.get();
                            else if (rh.count == 0)
                                readHolds.set(rh);
                            rh.count++;
                            cachedHoldCounter = rh; // cache for release
                        }
                        return 1;
                    }
                }
            }
    
          
            final boolean tryWriteLock() {
                Thread current = Thread.currentThread();
                int c = getState();
                if (c != 0) {
                    int w = exclusiveCount(c);
                    if (w == 0 || current != getExclusiveOwnerThread())
                        return false;
                    if (w == MAX_COUNT)
                        throw new Error("Maximum lock count exceeded");
                }
                if (!compareAndSetState(c, c + 1))
                    return false;
                setExclusiveOwnerThread(current);
                return true;
            }
    
          
            final boolean tryReadLock() {
                Thread current = Thread.currentThread();
                for (;;) {
                    int c = getState();
                    if (exclusiveCount(c) != 0 &&
                        getExclusiveOwnerThread() != current)
                        return false;
                    int r = sharedCount(c);
                    if (r == MAX_COUNT)
                        throw new Error("Maximum lock count exceeded");
                    if (compareAndSetState(c, c + SHARED_UNIT)) {
                        if (r == 0) {
                            firstReader = current;
                            firstReaderHoldCount = 1;
                        } else if (firstReader == current) {
                            firstReaderHoldCount++;
                        } else {
                            HoldCounter rh = cachedHoldCounter;
                            if (rh == null || rh.tid != getThreadId(current))
                                cachedHoldCounter = rh = readHolds.get();
                            else if (rh.count == 0)
                                readHolds.set(rh);
                            rh.count++;
                        }
                        return true;
                    }
                }
            }
    
            protected final boolean isHeldExclusively() {
                // While we must in general read state before owner,
                // we don't need to do so to check if current thread is owner
                return getExclusiveOwnerThread() == Thread.currentThread();
            }
    
            // Methods relayed to outer class
    
            final ConditionObject newCondition() {
                return new ConditionObject();
            }
    
            final Thread getOwner() {
                // Must read state before owner to ensure memory consistency
                return ((exclusiveCount(getState()) == 0) ?
                        null :
                        getExclusiveOwnerThread());
            }
    
            final int getReadLockCount() {
                return sharedCount(getState());
            }
    
            final boolean isWriteLocked() {
                return exclusiveCount(getState()) != 0;
            }
    
            final int getWriteHoldCount() {
                return isHeldExclusively() ? exclusiveCount(getState()) : 0;
            }
    
            final int getReadHoldCount() {
                if (getReadLockCount() == 0)
                    return 0;
    
                Thread current = Thread.currentThread();
                if (firstReader == current)
                    return firstReaderHoldCount;
    
                HoldCounter rh = cachedHoldCounter;
                if (rh != null && rh.tid == getThreadId(current))
                    return rh.count;
    
                int count = readHolds.get().count;
                if (count == 0) readHolds.remove();
                return count;
            }
    
            /**
             * Reconstitutes the instance from a stream (that is, deserializes it).
             */
            private void readObject(java.io.ObjectInputStream s)
                throws java.io.IOException, ClassNotFoundException {
                s.defaultReadObject();
                readHolds = new ThreadLocalHoldCounter();
                setState(0); // reset to unlocked state
            }
    
            final int getCount() { return getState(); }
        }
    
        /**
         * Nonfair version of Sync
         */
        static final class NonfairSync extends Sync {
            private static final long serialVersionUID = -8159625535654395037L;
            final boolean writerShouldBlock() {
                return false; // writers can always barge
            }
            final boolean readerShouldBlock() {
               
                return apparentlyFirstQueuedIsExclusive();
            }
        }
    
        /**
         * Fair version of Sync
         */
        static final class FairSync extends Sync {
            private static final long serialVersionUID = -2274990926593161451L;
            final boolean writerShouldBlock() {
                return hasQueuedPredecessors();
            }
            final boolean readerShouldBlock() {
                return hasQueuedPredecessors();
            }
        }
    
        /**
         * The lock returned by method {@link ReentrantReadWriteLock#readLock}.
         */
        public static class ReadLock implements Lock, java.io.Serializable {
            private static final long serialVersionUID = -5992448646407690164L;
            private final Sync sync;
    
            /**
             * Constructor for use by subclasses
             *
             * @param lock the outer lock object
             * @throws NullPointerException if the lock is null
             */
            protected ReadLock(ReentrantReadWriteLock lock) {
                sync = lock.sync;
            }
    
            /**
             * Acquires the read lock.
             *
             * <p>Acquires the read lock if the write lock is not held by
             * another thread and returns immediately.
             *
             * <p>If the write lock is held by another thread then
             * the current thread becomes disabled for thread scheduling
             * purposes and lies dormant until the read lock has been acquired.
             */
            public void lock() {
                sync.acquireShared(1);
            }
    
          
            public void lockInterruptibly() throws InterruptedException {
                sync.acquireSharedInterruptibly(1);
            }
    
          
            public boolean tryLock() {
                return sync.tryReadLock();
            }
    
         
            public boolean tryLock(long timeout, TimeUnit unit)
                    throws InterruptedException {
                return sync.tryAcquireSharedNanos(1, unit.toNanos(timeout));
            }
    
        
            public void unlock() {
                sync.releaseShared(1);
            }
    
            /**
             * Throws {@code UnsupportedOperationException} because
             * {@code ReadLocks} do not support conditions.
             *
             * @throws UnsupportedOperationException always
             */
            public Condition newCondition() {
                throw new UnsupportedOperationException();
            }
    
            public String toString() {
                int r = sync.getReadLockCount();
                return super.toString() +
                    "[Read locks = " + r + "]";
            }
        }
    
        /**
         * The lock returned by method {@link ReentrantReadWriteLock#writeLock}.
         */
        public static class WriteLock implements Lock, java.io.Serializable {
            private static final long serialVersionUID = -4992448646407690164L;
            private final Sync sync;
    
            /**
             * Constructor for use by subclasses
             *
             * @param lock the outer lock object
             * @throws NullPointerException if the lock is null
             */
            protected WriteLock(ReentrantReadWriteLock lock) {
                sync = lock.sync;
            }
    
            /**
             * Acquires the write lock.
             *
             * <p>Acquires the write lock if neither the read nor write lock
             * are held by another thread
             * and returns immediately, setting the write lock hold count to
             * one.
             *
             * <p>If the current thread already holds the write lock then the
             * hold count is incremented by one and the method returns
             * immediately.
             *
             * <p>If the lock is held by another thread then the current
             * thread becomes disabled for thread scheduling purposes and
             * lies dormant until the write lock has been acquired, at which
             * time the write lock hold count is set to one.
             */
            public void lock() {
                sync.acquire(1);
            }
    
            /**
             * Acquires the write lock unless the current thread is
             * {@linkplain Thread#interrupt interrupted}.
             *
             * <p>Acquires the write lock if neither the read nor write lock
             * are held by another thread
             * and returns immediately, setting the write lock hold count to
             * one.
             *
             * <p>If the current thread already holds this lock then the
             * hold count is incremented by one and the method returns
             * immediately.
             *
             * <p>If the lock is held by another thread then the current
             * thread becomes disabled for thread scheduling purposes and
             * lies dormant until one of two things happens:
             *
             * <ul>
             *
             * <li>The write lock is acquired by the current thread; or
             *
             * <li>Some other thread {@linkplain Thread#interrupt interrupts}
             * the current thread.
             *
             * </ul>
             *
             * <p>If the write lock is acquired by the current thread then the
             * lock hold count is set to one.
             *
             * <p>If the current thread:
             *
             * <ul>
             *
             * <li>has its interrupted status set on entry to this method;
             * or
             *
             * <li>is {@linkplain Thread#interrupt interrupted} while
             * acquiring the write lock,
             *
             * </ul>
             *
             * then {@link InterruptedException} is thrown and the current
             * thread's interrupted status is cleared.
             *
             * <p>In this implementation, as this method is an explicit
             * interruption point, preference is given to responding to
             * the interrupt over normal or reentrant acquisition of the
             * lock.
             *
             * @throws InterruptedException if the current thread is interrupted
             */
            public void lockInterruptibly() throws InterruptedException {
                sync.acquireInterruptibly(1);
            }
    
            /**
             * Acquires the write lock only if it is not held by another thread
             * at the time of invocation.
             *
             * <p>Acquires the write lock if neither the read nor write lock
             * are held by another thread
             * and returns immediately with the value {@code true},
             * setting the write lock hold count to one. Even when this lock has
             * been set to use a fair ordering policy, a call to
             * {@code tryLock()} <em>will</em> immediately acquire the
             * lock if it is available, whether or not other threads are
             * currently waiting for the write lock.  This &quot;barging&quot;
             * behavior can be useful in certain circumstances, even
             * though it breaks fairness. If you want to honor the
             * fairness setting for this lock, then use {@link
             * #tryLock(long, TimeUnit) tryLock(0, TimeUnit.SECONDS) }
             * which is almost equivalent (it also detects interruption).
             *
             * <p>If the current thread already holds this lock then the
             * hold count is incremented by one and the method returns
             * {@code true}.
             *
             * <p>If the lock is held by another thread then this method
             * will return immediately with the value {@code false}.
             *
             * @return {@code true} if the lock was free and was acquired
             * by the current thread, or the write lock was already held
             * by the current thread; and {@code false} otherwise.
             */
            public boolean tryLock( ) {
                return sync.tryWriteLock();
            }
    
            /**
             * Acquires the write lock if it is not held by another thread
             * within the given waiting time and the current thread has
             * not been {@linkplain Thread#interrupt interrupted}.
             *
             * <p>Acquires the write lock if neither the read nor write lock
             * are held by another thread
             * and returns immediately with the value {@code true},
             * setting the write lock hold count to one. If this lock has been
             * set to use a fair ordering policy then an available lock
             * <em>will not</em> be acquired if any other threads are
             * waiting for the write lock. This is in contrast to the {@link
             * #tryLock()} method. If you want a timed {@code tryLock}
             * that does permit barging on a fair lock then combine the
             * timed and un-timed forms together:
             *
             *  <pre> {@code
             * if (lock.tryLock() ||
             *     lock.tryLock(timeout, unit)) {
             *   ...
             * }}</pre>
             *
             * <p>If the current thread already holds this lock then the
             * hold count is incremented by one and the method returns
             * {@code true}.
             *
             * <p>If the lock is held by another thread then the current
             * thread becomes disabled for thread scheduling purposes and
             * lies dormant until one of three things happens:
             *
             * <ul>
             *
             * <li>The write lock is acquired by the current thread; or
             *
             * <li>Some other thread {@linkplain Thread#interrupt interrupts}
             * the current thread; or
             *
             * <li>The specified waiting time elapses
             *
             * </ul>
             *
             * <p>If the write lock is acquired then the value {@code true} is
             * returned and the write lock hold count is set to one.
             *
             * <p>If the current thread:
             *
             * <ul>
             *
             * <li>has its interrupted status set on entry to this method;
             * or
             *
             * <li>is {@linkplain Thread#interrupt interrupted} while
             * acquiring the write lock,
             *
             * </ul>
             *
             * then {@link InterruptedException} is thrown and the current
             * thread's interrupted status is cleared.
             *
             * <p>If the specified waiting time elapses then the value
             * {@code false} is returned.  If the time is less than or
             * equal to zero, the method will not wait at all.
             *
             * <p>In this implementation, as this method is an explicit
             * interruption point, preference is given to responding to
             * the interrupt over normal or reentrant acquisition of the
             * lock, and over reporting the elapse of the waiting time.
             *
             * @param timeout the time to wait for the write lock
             * @param unit the time unit of the timeout argument
             *
             * @return {@code true} if the lock was free and was acquired
             * by the current thread, or the write lock was already held by the
             * current thread; and {@code false} if the waiting time
             * elapsed before the lock could be acquired.
             *
             * @throws InterruptedException if the current thread is interrupted
             * @throws NullPointerException if the time unit is null
             */
            public boolean tryLock(long timeout, TimeUnit unit)
                    throws InterruptedException {
                return sync.tryAcquireNanos(1, unit.toNanos(timeout));
            }
    
            /**
             * Attempts to release this lock.
             *
             * <p>If the current thread is the holder of this lock then
             * the hold count is decremented. If the hold count is now
             * zero then the lock is released.  If the current thread is
             * not the holder of this lock then {@link
             * IllegalMonitorStateException} is thrown.
             *
             * @throws IllegalMonitorStateException if the current thread does not
             * hold this lock
             */
            public void unlock() {
                sync.release(1);
            }
    
            /**
             * Returns a {@link Condition} instance for use with this
             * {@link Lock} instance.
             * <p>The returned {@link Condition} instance supports the same
             * usages as do the {@link Object} monitor methods ({@link
             * Object#wait() wait}, {@link Object#notify notify}, and {@link
             * Object#notifyAll notifyAll}) when used with the built-in
             * monitor lock.
             *
             * <ul>
             *
             * <li>If this write lock is not held when any {@link
             * Condition} method is called then an {@link
             * IllegalMonitorStateException} is thrown.  (Read locks are
             * held independently of write locks, so are not checked or
             * affected. However it is essentially always an error to
             * invoke a condition waiting method when the current thread
             * has also acquired read locks, since other threads that
             * could unblock it will not be able to acquire the write
             * lock.)
             *
             * <li>When the condition {@linkplain Condition#await() waiting}
             * methods are called the write lock is released and, before
             * they return, the write lock is reacquired and the lock hold
             * count restored to what it was when the method was called.
             *
             * <li>If a thread is {@linkplain Thread#interrupt interrupted} while
             * waiting then the wait will terminate, an {@link
             * InterruptedException} will be thrown, and the thread's
             * interrupted status will be cleared.
             *
             * <li> Waiting threads are signalled in FIFO order.
             *
             * <li>The ordering of lock reacquisition for threads returning
             * from waiting methods is the same as for threads initially
             * acquiring the lock, which is in the default case not specified,
             * but for <em>fair</em> locks favors those threads that have been
             * waiting the longest.
             *
             * </ul>
             *
             * @return the Condition object
             */
            public Condition newCondition() {
                return sync.newCondition();
            }
    
            /**
             * Returns a string identifying this lock, as well as its lock
             * state.  The state, in brackets includes either the String
             * {@code "Unlocked"} or the String {@code "Locked by"}
             * followed by the {@linkplain Thread#getName name} of the owning thread.
             *
             * @return a string identifying this lock, as well as its lock state
             */
            public String toString() {
                Thread o = sync.getOwner();
                return super.toString() + ((o == null) ?
                                           "[Unlocked]" :
                                           "[Locked by thread " + o.getName() + "]");
            }
    
            /**
             * Queries if this write lock is held by the current thread.
             * Identical in effect to {@link
             * ReentrantReadWriteLock#isWriteLockedByCurrentThread}.
             *
             * @return {@code true} if the current thread holds this lock and
             *         {@code false} otherwise
             * @since 1.6
             */
            public boolean isHeldByCurrentThread() {
                return sync.isHeldExclusively();
            }
    
            /**
             * Queries the number of holds on this write lock by the current
             * thread.  A thread has a hold on a lock for each lock action
             * that is not matched by an unlock action.  Identical in effect
             * to {@link ReentrantReadWriteLock#getWriteHoldCount}.
             *
             * @return the number of holds on this lock by the current thread,
             *         or zero if this lock is not held by the current thread
             * @since 1.6
             */
            public int getHoldCount() {
                return sync.getWriteHoldCount();
            }
        }
    
        // Instrumentation and status
    
        /**
         * Returns {@code true} if this lock has fairness set true.
         *
         * @return {@code true} if this lock has fairness set true
         */
        public final boolean isFair() {
            return sync instanceof FairSync;
        }
    
        /**
         * Returns the thread that currently owns the write lock, or
         * {@code null} if not owned. When this method is called by a
         * thread that is not the owner, the return value reflects a
         * best-effort approximation of current lock status. For example,
         * the owner may be momentarily {@code null} even if there are
         * threads trying to acquire the lock but have not yet done so.
         * This method is designed to facilitate construction of
         * subclasses that provide more extensive lock monitoring
         * facilities.
         *
         * @return the owner, or {@code null} if not owned
         */
        protected Thread getOwner() {
            return sync.getOwner();
        }
    
        /**
         * Queries the number of read locks held for this lock. This
         * method is designed for use in monitoring system state, not for
         * synchronization control.
         * @return the number of read locks held
         */
        public int getReadLockCount() {
            return sync.getReadLockCount();
        }
    
        /**
         * Queries if the write lock is held by any thread. This method is
         * designed for use in monitoring system state, not for
         * synchronization control.
         *
         * @return {@code true} if any thread holds the write lock and
         *         {@code false} otherwise
         */
        public boolean isWriteLocked() {
            return sync.isWriteLocked();
        }
    
        /**
         * Queries if the write lock is held by the current thread.
         *
         * @return {@code true} if the current thread holds the write lock and
         *         {@code false} otherwise
         */
        public boolean isWriteLockedByCurrentThread() {
            return sync.isHeldExclusively();
        }
    
        /**
         * Queries the number of reentrant write holds on this lock by the
         * current thread.  A writer thread has a hold on a lock for
         * each lock action that is not matched by an unlock action.
         *
         * @return the number of holds on the write lock by the current thread,
         *         or zero if the write lock is not held by the current thread
         */
        public int getWriteHoldCount() {
            return sync.getWriteHoldCount();
        }
    
        /**
         * Queries the number of reentrant read holds on this lock by the
         * current thread.  A reader thread has a hold on a lock for
         * each lock action that is not matched by an unlock action.
         *
         * @return the number of holds on the read lock by the current thread,
         *         or zero if the read lock is not held by the current thread
         * @since 1.6
         */
        public int getReadHoldCount() {
            return sync.getReadHoldCount();
        }
    
      
        protected Collection<Thread> getQueuedWriterThreads() {
            return sync.getExclusiveQueuedThreads();
        }
    
      
        protected Collection<Thread> getQueuedReaderThreads() {
            return sync.getSharedQueuedThreads();
        }
    
     
        public final boolean hasQueuedThreads() {
            return sync.hasQueuedThreads();
        }
    
      
        public final boolean hasQueuedThread(Thread thread) {
            return sync.isQueued(thread);
        }
    
     
        public final int getQueueLength() {
            return sync.getQueueLength();
        }
    
       
        protected Collection<Thread> getQueuedThreads() {
            return sync.getQueuedThreads();
        }
    
      
        public boolean hasWaiters(Condition condition) {
            if (condition == null)
                throw new NullPointerException();
            if (!(condition instanceof AbstractQueuedSynchronizer.ConditionObject))
                throw new IllegalArgumentException("not owner");
            return sync.hasWaiters((AbstractQueuedSynchronizer.ConditionObject)condition);
        }
    
    
        public int getWaitQueueLength(Condition condition) {
            if (condition == null)
                throw new NullPointerException();
            if (!(condition instanceof AbstractQueuedSynchronizer.ConditionObject))
                throw new IllegalArgumentException("not owner");
            return sync.getWaitQueueLength((AbstractQueuedSynchronizer.ConditionObject)condition);
        }
    
      
        protected Collection<Thread> getWaitingThreads(Condition condition) {
            if (condition == null)
                throw new NullPointerException();
            if (!(condition instanceof AbstractQueuedSynchronizer.ConditionObject))
                throw new IllegalArgumentException("not owner");
            return sync.getWaitingThreads((AbstractQueuedSynchronizer.ConditionObject)condition);
        }
    
       
        public String toString() {
            int c = sync.getCount();
            int w = Sync.exclusiveCount(c);
            int r = Sync.sharedCount(c);
    
            return super.toString() +
                "[Write locks = " + w + ", Read locks = " + r + "]";
        }
    
       
        static final long getThreadId(Thread thread) {
            return UNSAFE.getLongVolatile(thread, TID_OFFSET);
        }
    
        // Unsafe mechanics
        private static final sun.misc.Unsafe UNSAFE;
        private static final long TID_OFFSET;
        static {
            try {
                UNSAFE = sun.misc.Unsafe.getUnsafe();
                Class<?> tk = Thread.class;
                TID_OFFSET = UNSAFE.objectFieldOffset
                    (tk.getDeclaredField("tid"));
            } catch (Exception e) {
                throw new Error(e);
            }
        }
    
    }
    

    可重入读写锁ReentrantReadWriteLock实现类ReadWriteLock。
    包含ReadLock(读锁)和WriteLock(写锁),包含实现了AQS的子类及其其他属性变量

    读锁加锁

    lock

    ReentrantReadWriteLock.ReadLock#lock


    image.png
    acquireShared

    AbstractQueuedSynchronizer#acquireShared


    image.png
    tryAcquireShared

    AbstractQueuedSynchronizer#tryAcquireShared


    image.png
    tryAcquireShared

    ReentrantReadWriteLock.Sync#tryAcquireShared

    protected final int tryAcquireShared(int unused) {
                /*
                 * Walkthrough:
                 * 1. If write lock held by another thread, fail.
                 * 2. Otherwise, this thread is eligible for
                 *    lock wrt state, so ask if it should block
                 *    because of queue policy. If not, try
                 *    to grant by CASing state and updating count.
                 *    Note that step does not check for reentrant
                 *    acquires, which is postponed to full version
                 *    to avoid having to check hold count in
                 *    the more typical non-reentrant case.
                 * 3. If step 2 fails either because thread
                 *    apparently not eligible or CAS fails or count
                 *    saturated, chain to version with full retry loop.
                 */
                Thread current = Thread.currentThread();
                int c = getState();
                if (exclusiveCount(c) != 0 &&
                    getExclusiveOwnerThread() != current)
                    return -1;
                int r = sharedCount(c);
                if (!readerShouldBlock() &&
                    r < MAX_COUNT &&
                    compareAndSetState(c, c + SHARED_UNIT)) {
                    if (r == 0) {
                        firstReader = current;
                        firstReaderHoldCount = 1;
                    } else if (firstReader == current) {
                        firstReaderHoldCount++;
                    } else {
                        HoldCounter rh = cachedHoldCounter;
                        if (rh == null || rh.tid != getThreadId(current))
                            cachedHoldCounter = rh = readHolds.get();
                        else if (rh.count == 0)
                            readHolds.set(rh);
                        rh.count++;
                    }
                    return 1;
                }
                return fullTryAcquireShared(current);
            }
    

    获取当前线程current和状态值c。
    根据状态值c调用exclusiveCount(c)获取排它锁值(低16位)。sharedCount()方法获取共享值(高16位)


    image.png

    exclusiveCount(c)表示写锁。如果有写锁则exclusiveCount(c)!=0,且当前线程不等于持有锁的线程,会返回-1,这样当前线程会调用doAcquireShared方法加入队列。如果没有写锁则exclusiveCount(c)=0,会继续往下执行得到r=sharedCount(c),读锁次数。
    调用readerShouldBlock()方法


    image.png
    AbstractQueuedSynchronizer#hasQueuedPredecessors
    image.png
    调用readerShouldBlock()方法,判断AQS队列是否有值。----此时,如果另一个线程对写锁加锁,则会添加到队列,不会往下执行。会调用fullTryAcquireShared()方法自旋再次获取

    如果AQS队列为空,则对高16位(读锁+1)。
    获取的r重入次数,如果是第一次,则r=0,假如只有t1线程加读锁,会把当前线程t1赋值给firstReader,firstReaderHoldCount的值赋值为1。
    else if (firstReader == current)判断
    如果这个线程t1再次加读锁,则firstReaderHoldCount+1。
    所以,firstReader表示第一个加读锁的线程。firstReaderHoldCount表示第一个线程进入的次数。
    如果是另一个线程t2加读锁,第一次cachedHoldCounter的值为null。会通过readHolds.get()方法获取HoldCounter rh


    image.png
    ThreadLocal#setInitialValue
    image.png
    ThreadLocal#createMap
    image.png
    得到HoldCounter值之后赋值给cachedHoldCounter和rh,对rh的count+1,如果当前线程t2再次进入rh的count直接+1
    如果t3线程加读锁,则rh.tid不等于current当前线程,需要重新通过readHolds.get()获取。如果t2线程再次进入cachedHoldCounter的值是上次的HoldCounter,也会从readHolds.get()方法获取当前线程的HoldCounter缓存值。
    所以,cachedHoldCounter表示,最后执行线程的HoldCounter值。count表示所属线程重入次数
    加入队列和队列尝试加锁

    调用AQS方法
    AbstractQueuedSynchronizer#addWaiter
    AbstractQueuedSynchronizer#acquireQueued

    读锁解锁

    调用ReentrantReadWriteLock.readLock().unlock()方法

    unlock

    ReentrantReadWriteLock.ReadLock#unlock


    image.png
    releaseShared

    AbstractQueuedSynchronizer#releaseShared


    image.png
    tryReleaseShared

    ReentrantReadWriteLock.Sync#tryReleaseShared

    protected final boolean tryReleaseShared(int unused) {
                Thread current = Thread.currentThread();
                if (firstReader == current) {
                    // assert firstReaderHoldCount > 0;
                    if (firstReaderHoldCount == 1)
                        firstReader = null;
                    else
                        firstReaderHoldCount--;
                } else {
                    HoldCounter rh = cachedHoldCounter;
                    if (rh == null || rh.tid != getThreadId(current))
                        rh = readHolds.get();
                    int count = rh.count;
                    if (count <= 1) {
                        readHolds.remove();
                        if (count <= 0)
                            throw unmatchedUnlockException();
                    }
                    --rh.count;
                }
                for (;;) {
                    int c = getState();
                    int nextc = c - SHARED_UNIT;
                    if (compareAndSetState(c, nextc))
                        // Releasing the read lock has no effect on readers,
                        // but it may allow waiting writers to proceed if
                        // both read and write locks are now free.
                        return nextc == 0;
                }
            }
    

    解锁过程:就是根据当前线程加读锁次数,调用tryReleaseShared一次当前线程rh.count减一。最后通过判断nextc 是否等于0返回是否要唤醒下一个线程

    doReleaseShared

    AbstractQueuedSynchronizer#doReleaseShared


    image.png

    判断头结点h.waitStatus值等于-1,CAS操作头结点的waitStatus成功(说明头结点waitStatus是-1,有下一个节点)并唤醒下一个线程。

    unparkSuccessor

    unparkSuccessor()调用AQS方法
    AbstractQueuedSynchronizer#unparkSuccessor

    写锁加锁

    ReentrantReadWriteLock.WriteLock#lock


    image.png
    acquire

    AbstractQueuedSynchronizer#acquire


    image.png
    tryAcquire

    ReentrantReadWriteLock.Sync#tryAcquire

    protected final boolean tryAcquire(int acquires) {
                /*
                 * Walkthrough:
                 * 1. If read count nonzero or write count nonzero
                 *    and owner is a different thread, fail.
                 * 2. If count would saturate, fail. (This can only
                 *    happen if count is already nonzero.)
                 * 3. Otherwise, this thread is eligible for lock if
                 *    it is either a reentrant acquire or
                 *    queue policy allows it. If so, update state
                 *    and set owner.
                 */
                Thread current = Thread.currentThread();
                int c = getState();
                int w = exclusiveCount(c);
                if (c != 0) {
                    // (Note: if c != 0 and w == 0 then shared count != 0)
                    if (w == 0 || current != getExclusiveOwnerThread())
                        return false;
                    if (w + exclusiveCount(acquires) > MAX_COUNT)
                        throw new Error("Maximum lock count exceeded");
                    // Reentrant acquire
                    setState(c + acquires);
                    return true;
                }
                if (writerShouldBlock() ||
                    !compareAndSetState(c, c + acquires))
                    return false;
                setExclusiveOwnerThread(current);
                return true;
            }
    

    执行流程:
    获取当前执行线程赋值给current,获取状态值赋值给c。根据c值得到排它锁(低16位)的值赋值给w。
    如果可用状态c等于0,表示没有任何读锁、写锁线程占有。
    调用writerShouldBlock()方法,判断AQS队列是否有等待的线程节点。如果有则当前线程加入队列,如果AQS中没有等待线程,CAS设置c值会成功。exclusiveOwnerThread设置当前执行线程。返回true不会添加到线程
    如果可用状态c不等于0,
    如果w=0说明,c没有写锁只有读锁,则会把当前线程加入AQS队列(这里可以表明,读锁不能升级为写锁)
    w不等于0,表示肯定有写锁,如果当前线程不等于持有锁线程则加入AQS队列。如果当前线程等于exclusiveOwnerThread值,重入则状态值加1

    加入队列和队列尝试加锁

    调用AQS方法
    AbstractQueuedSynchronizer#addWaiter
    AbstractQueuedSynchronizer#acquireQueued

    写锁解锁

    WriteLock#unlock

    java.util.concurrent.locks.ReentrantReadWriteLock.WriteLock#unlock


    image.png
    release

    AbstractQueuedSynchronizer#release


    image.png
    tryRelease

    ReentrantReadWriteLock.Sync#tryRelease


    image.png

    获取状态值state,判断排它锁的低16位是否等于0,并返回是否需要唤醒下一个线程

    总结:

    可重入的读写锁ReentrantReadWriteLock类的数据结构,包括读锁、写锁、实现AQS的内部类,其他属性。
    加锁过程中什么情况下会加入AQS队列:
    读锁加锁,写锁不等于0且不是当前线程(写锁不等于0且是当前线程可以加读锁----锁降级)
    写锁加锁,读锁不等于0且写锁等于0(锁升级)、写锁不等于0且不是当前线程、状态值等于0且队列不为空且当前线程不等于AQS第二个线程
    可重入的读写锁ReentrantReadWriteLock对重入线程加读锁解读锁的处理维护的属性值
    1、firstReader 第一个加读锁的线程
    2、firstReaderHoldCount 第一个线程加读锁的次数
    3、cachedHoldCounter 最后执行线程的readHolds值
    4、readHolds 包含当前线程id和count次数

    相关文章

      网友评论

        本文标题:读写锁ReadWriteLock源码分析

        本文链接:https://www.haomeiwen.com/subject/hvbynctx.html