美文网首页TensorFlow入门
RNN入门:多层LSTM网络(五)

RNN入门:多层LSTM网络(五)

作者: 调参写代码 | 来源:发表于2017-05-10 13:20 被阅读183次

    这里介绍如何利用TensorFlow(r1.1)的dynamic_rnn API对上一篇的代码进行简化。
    虽然名称上含有动态的意思,实际上却只是把输入从元组变成了整体,似乎没有真正实现动态。

    建模

    调用tf.nn.dynamic_rnn直接处理输入,而不必像上一篇一样,通过一个循环逐次对batch中的每一行进行处理。

    states_series, current_state = tf.nn.dynamic_rnn(cell, tf.expand_dims(batchX_placeholder, -1), initial_state=rnn_tuple_state)
    

    全部代码

    from __future__ import print_function, division
    import numpy as np
    import tensorflow as tf
    import matplotlib.pyplot as plt
    
    num_epochs = 100
    total_series_length = 50000
    truncated_backprop_length = 15
    state_size = 4
    num_classes = 2
    echo_step = 3
    batch_size = 5
    num_batches = total_series_length//batch_size//truncated_backprop_length
    num_layers = 3
    
    def generateData():
        x = np.array(np.random.choice(2, total_series_length, p=[0.5, 0.5]))
        y = np.roll(x, echo_step)
        y[0:echo_step] = 0
    
        x = x.reshape((batch_size, -1))  # The first index changing slowest, subseries as rows
        y = y.reshape((batch_size, -1))
    
        return (x, y)
    
    batchX_placeholder = tf.placeholder(tf.float32, [batch_size, truncated_backprop_length])
    batchY_placeholder = tf.placeholder(tf.int32, [batch_size, truncated_backprop_length])
    
    init_state = tf.placeholder(tf.float32, [num_layers, 2, batch_size, state_size])
    state_per_layer_list = tf.stack(init_state, axis=0)
    rnn_tuple_state = tuple(
        [tf.contrib.rnn.LSTMStateTuple(state_per_layer_list[idx][0], state_per_layer_list[idx][1])
         for idx in range(num_layers)]
    )
    
    W2 = tf.Variable(np.random.rand(state_size, num_classes),dtype=tf.float32)
    b2 = tf.Variable(np.zeros((1,num_classes)), dtype=tf.float32)
    
    # Forward passes
    cells = []
    for n in range(num_layers):
        cells.append(tf.contrib.rnn.BasicLSTMCell(state_size, state_is_tuple=True))
    cell = tf.contrib.rnn.MultiRNNCell(cells, state_is_tuple=True)
    
    states_series, current_state = tf.nn.dynamic_rnn(cell, tf.expand_dims(batchX_placeholder, -1), initial_state=rnn_tuple_state)
    states_series = tf.reshape(states_series, [-1, state_size])
    
    logits = tf.matmul(states_series, W2) + b2 #Broadcasted addition
    labels = tf.reshape(batchY_placeholder, [-1])
    
    logits_series = tf.unstack(tf.reshape(logits, [batch_size, truncated_backprop_length, num_classes]), axis=1)
    predictions_series = [tf.nn.softmax(logit) for logit in logits_series]
    
    
    losses = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits, labels=labels)
    total_loss = tf.reduce_mean(losses)
    
    train_step = tf.train.AdagradOptimizer(0.3).minimize(total_loss)
    
    def plot(loss_list, predictions_series, batchX, batchY):
        plt.subplot(2, 3, 1)
        plt.cla()
        plt.plot(loss_list)
    
        for batch_series_idx in range(5):
            one_hot_output_series = np.array(predictions_series)[:, batch_series_idx, :]
            single_output_series = np.array([(1 if out[0] < 0.5 else 0) for out in one_hot_output_series])
    
            plt.subplot(2, 3, batch_series_idx + 2)
            plt.cla()
            plt.axis([0, truncated_backprop_length, 0, 2])
            left_offset = range(truncated_backprop_length)
            plt.bar(left_offset, batchX[batch_series_idx, :], width=1, color="blue")
            plt.bar(left_offset, batchY[batch_series_idx, :] * 0.5, width=1, color="red")
            plt.bar(left_offset, single_output_series * 0.3, width=1, color="green")
    
        plt.draw()
        plt.pause(0.0001)
    
    
    with tf.Session() as sess:
        sess.run(tf.global_variables_initializer())
        plt.ion()
        plt.figure()
        plt.show()
        loss_list = []
    
        for epoch_idx in range(num_epochs):
            x,y = generateData()
    
            _current_state = np.zeros((num_layers, 2, batch_size, state_size))
    
            print("New data, epoch", epoch_idx)
    
            for batch_idx in range(num_batches):
                start_idx = batch_idx * truncated_backprop_length
                end_idx = start_idx + truncated_backprop_length
    
                batchX = x[:,start_idx:end_idx]
                batchY = y[:,start_idx:end_idx]
    
                _total_loss, _train_step, _current_state, _predictions_series = sess.run(
                    [total_loss, train_step, current_state, predictions_series],
                    feed_dict={
                        batchX_placeholder: batchX,
                        batchY_placeholder: batchY,
                        init_state: _current_state
                    })
    
    
                loss_list.append(_total_loss)
    
                if batch_idx%100 == 0:
                    print("Step",batch_idx, "Batch loss", _total_loss)
                    plot(loss_list, _predictions_series, batchX, batchY)
    
    plt.ioff()
    plt.show()
    

    参考文献:

    相关文章

      网友评论

        本文标题:RNN入门:多层LSTM网络(五)

        本文链接:https://www.haomeiwen.com/subject/hwtgtxtx.html