RNN
RNN前向过程:
pytorch 实现
import torch
import torch.nn as nn
import torch.nn.functional as F
class RNNCell(nn.Module):
def __init__(self, input_size, hidden_dim):
super(RNNCell, self).__init__()
self.input_size = input_size
self.hidden_dim = hidden_dim
self.linear1 = nn.Linear(hidden_dim, hidden_dim)
self.linear2 = nn.Linear(input_size, hidden_dim)
def forward(self, x, h_pre):
"""
:param x: (batch, input_size)
:param h_pre: (batch, hidden_dim)
:return: h_next (batch, hidden_dim)
"""
h_next = torch.tanh(self.linear1(h_pre) + self.linear2(x))
return h_next
class RNN(nn.Module):
def __init__(self, input_size, hidden_dim):
super(RNN, self).__init__()
self.input_size = input_size
self.hidden_dim = hidden_dim
self.rnn_cell = RNNCell(input_size, hidden_dim)
def forward(self, x):
"""
:param x: (seq_len, batch,input_size)
:return:
output (seq_len, batch, hidden_dim)
h_n (1, batch, hidden_dim)
"""
seq_len, batch, _ = x.shape
h = torch.zeros(batch, self.hidden_dim)
output = torch.zeros(seq_len, batch, self.hidden_dim)
for i in range(seq_len):
inp = x[i, :, :]
h = self.rnn_cell(inp, h)
output[i, :, :] = h
h_n = output[-1:, :, :]
return output, h_n
LSTM
LSTM前向过程:
- 输入门:
- 遗忘门:
- 输出门:
pytorch 实现
import torch
import torch.nn as nn
import torch.nn.functional as F
import copy
class Gate(nn.Module):
def __init__(self, input_size, hidden_dim):
super(Gate, self).__init__()
self.linear1 = nn.Linear(hidden_dim, hidden_dim)
self.linear2 = nn.Linear(input_size, hidden_dim)
def forward(self, x, h_pre, active_func):
h_next = active_func(self.linear1(h_pre) + self.linear2(x))
return h_next
def clones(module, N):
"Produce N identical layers."
return nn.ModuleList([copy.deepcopy(module) for _ in range(N)])
class LSTMCell(nn.Module):
def __init__(self, input_size, hidden_dim):
super(LSTMCell, self).__init__()
self.input_size = input_size
self.hidden_dim = hidden_dim
self.gate = clones(Gate(input_size, hidden_dim), 4)
def forward(self, x, h_pre, c_pre):
"""
:param x: (batch, input_size)
:param h_pre: (batch, hidden_dim)
:param c_pre: (batch, hidden_dim)
:return: h_next(batch, hidden_dim), c_next(batch, hidden_dim)
"""
f_t = self.gate[0](x, h_pre, torch.sigmoid)
i_t = self.gate[1](x, h_pre, torch.sigmoid)
g_t = self.gate[2](x, h_pre, torch.tanh)
o_t = self.gate[3](x, h_pre, torch.sigmoid)
c_next = f_t * c_pre + i_t * g_t
h_next = o_t * torch.tanh(c_next)
return h_next, c_next
class LSTM(nn.Module):
def __init__(self, input_size, hidden_dim):
super(LSTM, self).__init__()
self.input_size = input_size
self.hidden_dim = hidden_dim
self.lstm_cell = LSTMCell(input_size, hidden_dim)
def forward(self, x):
"""
:param x: (seq_len, batch,input_size)
:return:
output (seq_len, batch, hidden_dim)
h_n (1, batch, hidden_dim)
c_n (1, batch, hidden_dim)
"""
seq_len, batch, _ = x.shape
h = torch.zeros(batch, self.hidden_dim)
c = torch.zeros(batch, self.hidden_dim)
output = torch.zeros(seq_len, batch, self.hidden_dim)
for i in range(seq_len):
inp = x[i, :, :]
h, c = self.lstm_cell(inp, h, c)
output[i, :, :] = h
h_n = output[-1:, :, :]
return output, (h_n, c.unsqueeze(0))
GRU
GRU前向过程:
更新门:
候选隐含状态:
隐含状态:
输出:
网友评论