美文网首页
seaborn.scatterplot 绘制完整的散点图

seaborn.scatterplot 绘制完整的散点图

作者: ab02f58fd803 | 来源:发表于2020-08-17 20:02 被阅读0次

    散点图能够直观地看出预测值与真实值之间的关系,同时绘制完整散点图非常重要。一般散点图包含下列数据。

    1. 显示的数值,比如回归预测的R^2RMSE,还有样本大小samples等。
    2. 显示比例线,一般是1:1预测与真实之间拟合线以及对应的拟合方程。
    3. 标题X,Y轴的含义,单位等重要的量。

    注意:
    python和库的版本,我的版本是

    python 3.6
    seaborn 0.10.0
    pandas 1.0.1
    numpy 1.19.1
    matplotlib 2.2.5
    
    import seaborn as sns
    import matplotlib.pyplot as plt
    import pandas as pd
    import numpy as np
    
    
    sns.set(style="white", font_scale=1.5,color_codes=True)
    
    ### 注意这个是读取绘制的文件名
    for file in file_name:
    
        dataset = pd.read_csv(file)
        
        ### 1:1比例线
        pred_min, pred_max = dataset['y_pred'].min(),dataset['y_pred'].max()
        true_min, true_max = dataset['y_test'].min(),dataset['y_test'].max()
    
        y_pred  = dataset['y_test'].to_numpy()
        y_test =  dataset['y_pred'].to_numpy()
        
        xy_mse = np.sum((y_pred-y_test)**2);
        xy_mean = np.mean(y_pred);
        xx_mean = np.sum((y_pred - xy_mean)**2);
        R2 = 1 - xy_mse/xx_mean
    
        RMSE = np.sqrt(np.mean((y_pred - y_test)**2))
    
    
        p = np.polyfit(y_pred, y_test, 1)
    
        formatSpec = 'y = %.4fx+ %.4f'%(p[0], p[1])
        formatXy = 'y = x'
    
        x1 = np.linspace(pred_min,pred_max);  
        y1 = np.polyval(p, x1 )
        
        str_R2 = '$R^2$ = %.4f\nRMSE = %.2f \nsamples = %d'%(R2, RMSE, dataset.shape[0])
    
        
        f, ax= plt.subplots(figsize = (14, 10))
        
        #plt.title('%s'%file[:-4])
        plt.title('The demo of scatter map')
    
            ####   set the colorbar font size
            #### https://stackoverflow.com/questions/34706845/change-xticklabels-fontsize-of-seaborn-heatmap 
        
            ####   set the x y labels font size 
            ####  https://www.cnblogs.com/lemonbit/p/7419851.html
        ax.tick_params(labelsize = 16) #
            #  # ax.set_ylabel('the Number of Models',fontsize=15, color='r')
            ## cmap='BrBG'  'RdBu'
        scatter = sns.scatterplot(x= 'y_pred', y='y_test', data = dataset, alpha = 0.8, color = 'b')
    
        
        ax.plot(np.arange(pred_min, pred_max,0.1), np.arange(pred_min, pred_max,0.1), color='r', linewidth=3, alpha=0.6, label = formatXy )
        ax.plot(x1, y1, color='k', linewidth=3, alpha=0.6, label = formatSpec)
        ax.legend(loc = 'lower right', fontsize = 20)
        x_pos1 = int(pred_min) 
        y_pos1 = int(0.9 * true_max)
        ax.text(x_pos1,y_pos1 ,str_R2, fontsize = 20)
        file = 'temp'
        f.savefig('%s.png'%file, dpi=300, bbox_inches='tight')
        plt.xlabel( 'X axis')
        plt.ylabel( 'Y axis')
    
    
        plt.show()
    
    temp.png

    相关文章

      网友评论

          本文标题:seaborn.scatterplot 绘制完整的散点图

          本文链接:https://www.haomeiwen.com/subject/hwxcjktx.html