美文网首页
cs231n课程笔记:图像分类

cs231n课程笔记:图像分类

作者: spectre_hola | 来源:发表于2018-10-29 16:47 被阅读0次

    必须先开始学cs231n了,前一段时间匆匆看了一遍视频,感觉不行,只能再来一遍记一记笔记了,哎,越学越感觉自己啥都不会啊。笔记参考:https://zhuanlan.zhihu.com/p/20894041?refer=intelligentunit,随后会加入一些自己的理解
    非原创,禁止转载本文


      1. 图像分类、数据驱动方法和流程
      • 1.1 图像分类
      • 1.2 数据驱动方法
      • 1.3 流程
      1. Nearest Neighbor分类器
      • 2.1 Nearest Neighbor分类器
      • 2.2 k-Nearest Neighbor
      1. 验证集、交叉验证集和超参数调优
      • 3.1 验证集
      • 3.2 交叉验证集
      • 3.3 实际应用
      • 3.4 Nearest Neighbor的优劣
      1. 小结
      1. 小结:应用kNN实践
      1. 拓展阅读

    1.图像分类、数据驱动方法和流程

    1.1 图像分类

    目标:所谓图像分类问题,就是已有固定的分类标签集合,然后对于输入的图像,从分类标签集合中找出一个分类标签,最后把分类标签分配给该输入图像。
    困难和挑战:视角变化(Viewpoint variation)、大小变化(Scale variation)、形变(Deformation)、遮挡(Occlusion)、光照条件(Illumination conditions)、背景干扰(Background clutter)、类内差异(Intra-class variation)

    1.2 数据驱动方法

    给计算机很多数据,然后实现学习算法,让计算机学习到每个类的外形。这种方法,就是数据驱动方法

    1.3 图像分类流程

    • 输入:输入是包含N个图像的集合,每个图像的标签是K种分类标签中的一种。这个集合称为训练集。
    • 学习:这一步的任务是使用训练集来学习每个类到底长什么样。一般该步骤叫做训练分类器或者学习一个模型。
    • 评价:让分类器来预测它未曾见过的图像的分类标签,并以此来评价分类器的质量。我们会把分类器预测的标签和图像真正的分类标签对比。毫无疑问,分类器预测的分类标签和图像真正的分类标签如果一致,那就是好事,这样的情况越多越好。

    2. Nearest Neighbor分类器

    2.1 Nearest Neighbor分类器

    这个分类器和卷积神经网络没有任何关系,实际中也极少使用,但通过实现它,可以让读者对于解决图像分类问题的方法有个基本的认识。
    那么具体如何比较两张图片呢?最简单的方法就是逐个像素比较,最后将差异值全部加起来。换句话说,就是将两张图片先转化为两个向量,然后计算他们的
    L1距离:


    下面,让我们看看如何用代码来实现这个分类器。首先,我们将CIFAR-10的数据加载到内存中,并分成4个数组:训练数据和标签,测试数据和标签。在下面的代码中,Xtr(大小是50000x32x32x3)存有训练集中所有的图像,Ytr是对应的长度为50000的1维数组,存有图像对应的分类标签(从0到9):
    Xtr, Ytr, Xte, Yte = load_CIFAR10('data/cifar10/') # a magic function we provide
    # flatten out all images to be one-dimensional
    Xtr_rows = Xtr.reshape(Xtr.shape[0], 32 * 32 * 3) # Xtr_rows becomes 50000 x 3072
    Xte_rows = Xte.reshape(Xte.shape[0], 32 * 32 * 3) # Xte_rows becomes 10000 x 3072
    

    现在我们得到所有的图像数据,并且把他们拉长成为行向量了。接下来展示如何训练并评价一个分类器:

    nn = NearestNeighbor() # create a Nearest Neighbor classifier class
    nn.train(Xtr_rows, Ytr) # train the classifier on the training images and labels
    Yte_predict = nn.predict(Xte_rows) # predict labels on the test images
    # and now print the classification accuracy, which is the average number
    # of examples that are correctly predicted (i.e. label matches)
    print 'accuracy: %f' % ( np.mean(Yte_predict == Yte) )
    

    作为评价标准,我们常常使用准确率,它描述了我们预测正确的得分。请注意以后我们实现的所有分类器都需要有这个API:train(X, y)函数。该函数使用训练集的数据和标签来进行训练。从其内部来看,类应该实现一些关于标签和标签如何被预测的模型。这里还有个predict(X)函数,它的作用是预测输入的新数据的分类标签。现在还没介绍分类器的实现,下面就是使用L1距离的Nearest Neighbor分类器的实现套路:

    import numpy as np
    
    class NearestNeighbor(object):
      def __init__(self):
        pass
    
      def train(self, X, y):
        """ X is N x D where each row is an example. Y is 1-dimension of size N """
        # the nearest neighbor classifier simply remembers all the training data
        self.Xtr = X
        self.ytr = y
    
      def predict(self, X):
        """ X is N x D where each row is an example we wish to predict label for """
        num_test = X.shape[0]
        # lets make sure that the output type matches the input type
        Ypred = np.zeros(num_test, dtype = self.ytr.dtype)
    
        # loop over all test rows
        for i in xrange(num_test):
          # find the nearest training image to the i'th test image
          # using the L1 distance (sum of absolute value differences)
          distances = np.sum(np.abs(self.Xtr - X[i,:]), axis = 1)
          min_index = np.argmin(distances) # get the index with smallest distance
          Ypred[i] = self.ytr[min_index] # predict the label of the nearest example
    
        return Ypred
    

    如果你用这段代码跑CIFAR-10,你会发现准确率能达到38.6%。这比随机猜测的10%要好,但是比人类识别的水平(据研究推测是94%)和卷积神经网络能达到的95%还是差多了。

    L2距离:从几何学的角度,可以理解为它在计算两个向量间的欧式距离。L2距离的公式如下:


    只需要替换上面代码中的1行代码就行
    distances = np.sqrt(np.sum(np.square(self.Xtr - X[i,:]), axis = 1))
    

    注意在这里使用了np.sqrt,但是在实际中可能不用。因为求平方根函数是一个单调函数,它对不同距离的绝对值求平方根虽然改变了数值大小,但依然保持了不同距离大小的顺序。所以用不用它,都能够对像素差异的大小进行正确比较。如果你在CIFAR-10上面跑这个模型,正确率是35.4%,比刚才还低了!。

    L1和L2比较。比较这两个度量方式是挺有意思的。在面对两个向量之间的差异时,L2比L1更加不能容忍这些差异。也就是说,相对于1个巨大的差异,L2距离更倾向于接受多个中等程度的差异。L1和L2都是在p-norm常用的特殊形式。

    2.2 k-Nearest Neighbor分类器

    KNN思想:与其只找最相近的那1个图片的标签,我们找最相似的k个图片的标签,然后让他们针对测试图片进行投票,最后把票数最高的标签作为对测试图片的预测。所以当k=1的时候,k-Nearest Neighbor分类器就是Nearest Neighbor分类器。从直观感受上就可以看到,更高的k值可以让分类的效果更平滑,使得分类器对于异常值更有抵抗力。


    上面示例展示了Nearest Neighbor分类器和5-Nearest Neighbor分类器的区别。例子使用了2维的点来表示,分成3类(红、蓝和绿)。不同颜色区域代表的是使用L2距离的分类器的决策边界。白色的区域是分类模糊的例子(即图像与两个以上的分类标签绑定)。需要注意的是,在NN分类器中,异常的数据点(比如:在蓝色区域中的绿点)制造出一个不正确预测的孤岛。5-NN分类器将这些不规则都平滑了,使得它针对测试数据的泛化(generalization)能力更好(例子中未展示)。注意,5-NN中也存在一些灰色区域,这些区域是因为近邻标签的最高票数相同导致的(比如:2个邻居是红色,2个邻居是蓝色,还有1个是绿色)

    如何选择k值呢?

    3. 验证集、交叉验证集和超参数调优

    3.1 验证集(validation set)

    k-NN分类器需要设定k值,那么选择哪个k值最合适的呢?我们可以选择不同的距离函数,比如L1范数和L2范数等,那么选哪个好?还有不少选择我们甚至连考虑都没有考虑到(比如:点积)。所有这些选择,被称为超参数(hyperparameter)。

    绝对不能使用测试集调优!!!(这一点应该没问题,稍有ML常识的小伙伴都清楚)
    所以一般的方法是:从训练集中取出一部分数据用来调优,我们称之为验证集(validation set)。以CIFAR-10为例,我们可以用49000个图像作为训练集,用1000个图像作为验证集。验证集其实就是作为假的测试集来调优。下面就是代码:

    # assume we have Xtr_rows, Ytr, Xte_rows, Yte as before
    # recall Xtr_rows is 50,000 x 3072 matrix
    Xval_rows = Xtr_rows[:1000, :] # take first 1000 for validation
    Yval = Ytr[:1000]
    Xtr_rows = Xtr_rows[1000:, :] # keep last 49,000 for train
    Ytr = Ytr[1000:]
    
    # find hyperparameters that work best on the validation set
    validation_accuracies = []
    for k in [1, 3, 5, 10, 20, 50, 100]:
    
      # use a particular value of k and evaluation on validation data
      nn = NearestNeighbor()
      nn.train(Xtr_rows, Ytr)
      # here we assume a modified NearestNeighbor class that can take a k as input
      Yval_predict = nn.predict(Xval_rows, k = k)
      acc = np.mean(Yval_predict == Yval)
      print 'accuracy: %f' % (acc,)
    
      # keep track of what works on the validation set
      validation_accuracies.append((k, acc))
    

    注意一下这个 acc = np.mean(Yval_predict == Yval)

    程序结束后,我们会作图分析出哪个k值表现最好,然后用这个k值来跑真正的测试集,并作出对算法的评价。
    把训练集分成训练集和验证集。使用验证集来对所有超参数调优。最后只在测试集上跑一次并报告结果。

    3.2 交叉验证

    原因:训练集数量较小(因此验证集的数量更小)
    方法:还是用刚才的例子,如果是交叉验证集,我们就不是取1000个图像,而是将训练集平均分成5份,其中4份用来训练,1份用来验证。然后我们循环着取其中4份来训练,其中1份来验证,最后取所有5次验证结果的平均值作为算法验证结果。


    这就是5份交叉验证对k值调优的例子。针对每个k值,得到5个准确率结果,取其平均值,然后对不同k值的平均表现画线连接。本例中,当k=7的时算法表现最好(对应图中的准确率峰值)。如果我们将训练集分成更多份数,直线一般会更加平滑(噪音更少)。

    3.3 实际应用

    在实际情况下,人们不是很喜欢用交叉验证,主要是因为它会耗费较多的计算资源。一般直接把训练集按照50%-90%的比例分成训练集和验证集。但这也是根据具体情况来定的:如果超参数数量多,你可能就想用更大的验证集,而验证集的数量不够,那么最好还是用交叉验证吧。至于分成几份比较好,一般都是分成3、5和10份。



    常用的数据分割模式。给出训练集和测试集后,训练集一般会被均分。这里是分成5份。前面4份用来训练,黄色那份用作验证集调优。如果采取交叉验证,那就各份轮流作为验证集。最后模型训练完毕,超参数都定好了,让模型跑一次(而且只跑一次)测试集,以此测试结果评价算法。

    3.4 Nearest Neighbor分类器的优劣

    优点:易于理解,实现简单 ; 算法的训练不需要花时间,因为其训练过程只是将训练集数据存储起来
    缺点:测试要花费大量时间计算,因为每个测试图像需要和所有存储的训练图像进行比较

    在实际应用中,我们关注测试效率远远高于训练效率。其实,我们后续要学习的卷积神经网络在这个权衡上走到了另一个极端:虽然训练花费很多时间,但是一旦训练完成,对新的测试数据进行分类非常快。
    Nearest Neighbor分类器在某些特定情况(比如数据维度较低)下,可能是不错的选择。但是在实际的图像分类工作中,很少使用。

    图片的排布更像是一种颜色分布函数,或者说是基于背景的,而不是图片的语义主体。我们更希望希望同类的图片能够聚集在一起,而不被背景或其他不相关因素干扰。

    4. 小结

    • 介绍了图像分类问题。在该问题中,给出一个由被标注了分类标签的图像组成的集合,要求算法能预测没有标签的图像的分类标签,并根据算法预测准确率进行评价。
    • 介绍了一个简单的图像分类器:最近邻分类器(Nearest Neighbor classifier)。分类器中存在不同的超参数(比如k值或距离类型的选取),要想选取好的超参数不是一件轻而易举的事。
    • 选取超参数的正确方法是:将原始训练集分为训练集和验证集,我们在验证集上尝试不同的超参数,最后保留表现最好那个。
    • 如果训练数据量不够,使用交叉验证方法,它能帮助我们在选取最优超参数的时候减少噪音。
    • 一旦找到最优的超参数,就让算法以该参数在测试集跑且只跑一次,并根据测试结果评价算法。
    • 最近邻分类器能够在CIFAR-10上得到将近40%的准确率。该算法简单易实现,但需要存储所有训练数据,并且在测试的时候过于耗费计算能力。
    • 最后,我们知道了仅仅使用L1和L2范数来进行像素比较是不够的,图像更多的是按照背景和颜色被分类,而不是语义主体分身。

    5. 小结:实际应用k-NN

    如果你希望将k-NN分类器用到实处(最好别用到图像上,若是仅仅作为练手还可以接受),那么可以按照以下流程:

    1. 预处理你的数据:对你数据中的特征进行归一化(normalize),让其具有零平均值(zero mean)和单位方差(unit variance)。在后面的小节我们会讨论这些细节。本小节不讨论,是因为图像中的像素都是同质的,不会表现出较大的差异分布,也就不需要标准化处理了。
    2. 如果数据是高维数据,考虑使用降维方法,比如PCA(wiki ref, CS229ref, blog ref)或随机投影
    3. 将数据随机分入训练集和验证集。按照一般规律,70%-90% 数据作为训练集。这个比例根据算法中有多少超参数,以及这些超参数对于算法的预期影响来决定。如果需要预测的超参数很多,那么就应该使用更大的验证集来有效地估计它们。如果担心验证集数量不够,那么就尝试交叉验证方法。如果计算资源足够,使用交叉验证总是更加安全的(份数越多,效果越好,也更耗费计算资源)。
    4. 在验证集上调优,尝试足够多的k值,尝试L1和L2两种范数计算方式。
    5. 如果分类器跑得太慢,尝试使用Approximate Nearest Neighbor库(比如FLANN)来加速这个过程,其代价是降低一些准确率。
    6. 对最优的超参数做记录。记录最优参数后,是否应该让使用最优参数的算法在完整的训练集上运行并再次训练呢?因为如果把验证集重新放回到训练集中(自然训练集的数据量就又变大了),有可能最优参数又会有所变化。在实践中,不要这样做千万不要在最终的分类器中使用验证集数据,这样做会破坏对于最优参数的估计。直接使用测试集来测试用最优参数设置好的最优模型,得到测试集数据的分类准确率,并以此作为你的kNN分类器在该数据上的性能表现。

    6. 拓展阅读

    下面是一些你可能感兴趣的拓展阅读链接:


    再次感谢原作者的翻译!!

    相关文章

      网友评论

          本文标题:cs231n课程笔记:图像分类

          本文链接:https://www.haomeiwen.com/subject/hxvbtqtx.html