美文网首页Java基础
JVM详解5.类加载机制

JVM详解5.类加载机制

作者: 卢卡斯哔哔哔 | 来源:发表于2018-12-15 09:49 被阅读1次

点击进入我的博客

虚拟机的类加载机制:虚拟机把描述类的数据从Class文件加载到内存,并对数据进行检验、转换解析和初始化,最终形成可以被虚拟机直接使用的Java类型,这就是虚拟机的类加载机制。
运行期加载:Java中,类的加载、连接、初始化都是运行期完成的,这种策略虽然会导致类加载时的性能开销,但提供了高度的灵活性,Java可以动态扩展的语言特性就是依赖运行期加载和动态连接这个特点实现的。

5.1 类加载的时机

类的生命周期:类从被加载到虚拟机内存中开始,到卸载出内存为止,他的整个生命周期包括:加载(Loading)、验证(Verification)、准备(Preparation)、解析(Resolution)、初始化(Initialization)、使用(Using)和卸载(Unloading)7个阶段。其中验证、准备、解析3个部分统称为连接(Linking)。

类的生命周期
类加载的顺序
  1. 加载、验证、准备、初始化、和卸载这5个阶段的顺序是确定的,类的加载过程必须按照这种按部就班地开始
  2. 解析阶段在某些情况下可以在初始化阶段之后再开始,这是为了支持java语言的运行时绑定(也称为动态绑定)。
  3. 注意这里所说的都是开始而不是完成,因为这些阶段通常都是互相交叉地混合式进行的,通常会在一个阶段执行的过程中调用、激活另外一个阶段。
什么时候开始第一个阶段——加载

Java虚拟机规范中对类加载过程中的第一个阶段并没有进行强制约束,这点可以交给虚拟机的具体实现来自由把握。

主动引用——触发类的初始化

Java虚拟机规范中规定有且只有这5种会触发类进行初始化的场景,这5种场景中的行为称为对一个类进行主动引用;其他所有引用类的方式都不会触发初始化,称为被动引用

  1. 遇到new、getstatic、putstatic或invokestatic这4条字节码指令时,如果类没有进行过初始化,则需要先触发其初始化。在Java中则是:使用new关键字实例化对象的时候、读取或设置一个类的静态字段(被final修饰、已在编译期把结果放入常量池的静态字段除外)的时候,以及调用一个类的静态方法的时候。
  2. 使用java.lang.reflect包的方法对类进行反射调用的时候,如果类没有进行过初始化,则需要先触发其初始化。
  3. 当初始化一个类的时候,如果发型其父类还没有进行初始化,则需要先触发其父类的初始化。
  4. 当虚拟机启动时,用户指定一个要执行的主类(包含main()方法的那个类),虚拟机会先初始化这个主类。
  5. 当使用JDK1.7的动态语言支持时,如果一个java.lang.invoke.MethodHandle实例最后的解析结果REF_getStatic、REF_putStatic、REF_invokeStatic的方法句柄,并且这个方法句柄所对应的类没有进行过初始化,则需要先触发其初始化。
被动引用
  1. 通过子类引用父类的静态字段,不会触发子类的初始化。对于静态字段,只有直接定义这个类字段的类才会被初始化。
class SuperClass {
    static {
        System.out.println("SuperClass init!");
    }
    public static int value = 0;
}

class SubClass extends SuperClass{
    static {
        System.out.println("SubClass init!");
    }
}

public class NotInitialization {
    public static void main(String[] args) {
        System.out.println(SubClass.value);
    }
}
SuperClass init!
0
  1. 使用数组定义来引用类,不会触发此类的初始化。下面的代码虽然没有触发SuperClass的初始化,但是触发了一个名为[SuperClass的类的初始化,这是JVM自动生成的、直接继承java.lang.Object、SuperClass的一维数组,创建动作由字节码newarray触发,
class SuperClass {
    static {
        System.out.println("SuperClass init!");
    }
}

public class NotInitialization {
    public static void main(String[] args) {
        SuperClass[] superArr = new SuperClass[0];
    }
}
  1. 常量在编译阶段会存入调用类的常量池中,本质上并没有直接引用到定义常量的类,因此不会触发定义常量的类的初始化。实际上NotInitialization的Class文件中并没有ConstClass类的符号入口,这两个类在编译成Class文件之后就不存在任何的联系类。
class ConstClass {
    static {
        System.out.println("ConstClass init!");
    }
    public static final String HELLOW_WORLD="hello world";
}

public class NotInitialization {
    public static void main(String[] args) {
        System.out.println(ConstClass.HELLOW_WORLD);
    }
}
接口的加载
  • 接口也有初始化过程,这点与类是一致的,上面的代码都是用静态代码块“static{}”来输出初始化信息的,而接口中不能使用“static{}“语句块,但编译器仍然会为接口生成“clinit()“类构造器,用于初始化接口中所定义的成员变量。
  • 接口与类真正有所区别的是:当一个类在初始化时,要求其父类全部都已经初始化过了;但是一个接口在初始化时,并不要求其父接口全部都完成了初始化,只有在真正使用到父接口的时候(如引用接口中定义的常量)才会初始化。

5.2 类加载的详细过程

JVM中类加载的全过程:加载、验证、准备、解析和初始化这5个阶段(注意区别于类的生命周期)。

5.2.1 加载

加载是类加载(Class Loading)过程的第一个阶段,在加载阶段,虚拟机需要完成以下3件事情:

  1. 通过一个类的全限定名来获取定义此类的二进制字节流。
  2. 将这个字节流所代表的静态存储结构转化为方法区的运行时数据结构。
  3. 在内存中生成一个代表这个类的java.lang.Class对象,作为方法区这个类的各种数据的访问入口。
获取定义类的二进制字节流
  1. 从ZIP包中读取,这很常见,最终成为日后JAR、EAR、WAR格式的基础。
  2. 从网络中获取,这种场景最典型的应用就是Applet。
  3. 运行时计算生成,这种场景使用的最多的就是动态代理技术,在java.lang.reflect.Proxy中,就是用了ProxyGenerator.generatePorxyClass来为特定接口生成形式为”$Proxy”的代理类的二进制字节流。
  4. 由其他文件生成,典型场景是JSP应用,即由JSP文件生成对应的Class类。
  5. 从数据库中读取,这种场景相对少见些,例如有些中间件服务器(如SAP Netweaver)可以选择把程序安装到数据库中来完成程序代码在集群间的分发。
非数组类的加载

非数组类的加载阶段(准确地说,是加载阶段中获取类的二进制字节流的动作)是开发人员可控性最强的,因为加载阶段既可以使用系统提供的引导类加载器来完成,也可以由用户自定义的类加载器去完成,开发人员可以通过定义自己的类加载器去控制字节流的获取方式(即重写一个类加载器的loadClass()方法)。

数组类的加载

数组类本身不通过类加载器创建,它是由Java虚拟机直接创建的。但数组类的元素类型(Element Type,指的是数组去掉所有维度的类型)最终是要靠类加载器去创建,一个数组类(下面简称C)创建过程遵循以下规则:

  1. 如果数组的组件类型(Component Type,指的是数组去掉一个维度的类型)是引用类型,那就递归采用本节定义的加载过程去加载这个组件类型,数组C将在加载该组件类型的类加载器的类名称空间上被标识(一个类必须与类加载器一起确定唯一性)。
  2. 如果数组的组件类型不是引用类型(例如int[]数组),Java虚拟机将会把数组C标记为与引导类加载器关联。
  3. 数组类的可见性与它的组建类型的可见性一致,如果组件类型不是引用类型,那数组类的可见性将默认为public。
加载过程的后两件事
  • 加载阶段完成后,虚拟机外部的二进制字节流就按照虚拟机所需的格式存储在方法区之中,方法区中的数据存储格式由虚拟机实现自行定义,虚拟机规范未规定此区域的具体数据结构。
  • 然后在内存中实例化一个java.lang.Class类的对象,这个对象将作为程序访问方法区中的这些类型数据的外部接口。(java.lang.Class类对象并没有明确规定是在Java堆中,对于HotSpot虚拟机而言,Class对象比较特殊,它虽然是对象但是存放在方法区里面)。
加载阶段与连接阶段的交叉

加载阶段与连接阶段的部分内容(如一部分字节码文件格式验证动作)是交叉进行的,加载阶段尚未完成,连接阶段可能已经开始。这些夹在加载阶段之中进行的动作,仍然属于连接阶段的内容,这两个阶段的开始时间仍然保持着固定的先后顺序

5.2.2 验证

验证是连接阶段的第一步,这一阶段的目的是为了确保Class文件的字节流中包含的信息符合当前虚拟机的要求,并且不会危害虚拟机自身的安全。如果验证到输入的字节流不符合Class文件格式的约束,会抛出java.lang.VerifyError异常。
验证阶段大致上会完成下面4个阶段的检验动作:文件格式验证、元数据验证、字节码验证、符号引用验证。
验证阶段是一个非常重要的、但不一定必要(因为对程序运行期没有影响)的阶段。如果所运行的全部代码(包括自己编写的及第三方包中的代码)都已经被反复使用和验证过,那么在实施阶段就可以考虑使用-Xverify:none参数来关闭大部分的类验证措施,以缩短虚拟机类加载的时间。

文件格式验证

第一阶段要验证字节流是否符合Class文件格式的规范,并且能被当前版本的虚拟机处理。该验证阶段的主要目的是保证输入的字节流能正确的解析并存储于方法区之内,只有通过了这个阶段的验证后,字节流才会进入内存的方法区中进行存储,所以后面3个验证阶段全部是基于方法区的存储结果进行的,不会再直接操作字节流。这一阶段可能包括下面这些验证点:

  1. 是否以魔数0xCAFEBABE开头。
  2. 主、次版本号是否在当前虚拟机处理范围之内。
  3. 常量池的常量中是否有不被支持的常量类型(检查常量tag标志)。
  4. 指向常量的各种索引值是否有指向不存在的常量或不符合类型的常量。
  5. CONSTANT_Utf8_info型的常量中是否有不符合UTF8编码的数据。
  6. Class文件中各个部分及文件本身是否有被删除的或附加的其他信息。
  7. 还有很多~
元数据验证

第二阶段是对字节码描述的信息进行语义分析,以保证其描述的信息符合Java语言规范的要求,这个阶段可能包括的验证点如下:

  1. 这个类是否有父类(除了java.lang.Object之外,所有的类都应当由父类)。
  2. 这个类的父类是否继承了不允许被继承的类(被final修饰的类)。
  3. 如果这个类不是抽象类,是否实现了其父类或接口之中要求实现的所有方法。
  4. 类中的字段、方法是否与父类产生矛盾(例如覆盖了父类的final字段,或者出现不符合规则的方法重载,例如方法参数都一致,但返回值类型却不同等)。
  5. 还有很多~
字节码验证

字节码验证是整个验证过程中最复杂的一个阶段,主要目的是通过数据流和控制流分析,确定程序语义是合法的、符合逻辑的。这个阶段将对类的方法体进行校验分析,保证被校验类的方法在运行时不会做出危害虚拟机安全的事件,例如:

  1. 保证任意时刻操作数栈的数据类型与指令代码序列都能配合工作,例如不会出现类似这样的情况:在操作栈放置了一个int类型的数据,使用时却按long类型来加载入本地变量表中。
  2. 保证跳转指令不会跳转到方法体以外的字节码指令上。
  3. 保证方法体中的类型转换是有效地,例如可以把一个子类对象赋值给父类数据类型,这是安全的,但是把父类对象复制给子类数据类型,甚至把对象赋值给与他毫无继承关系、完全不相干的一个数据类型,则是危险和不合法的。
  4. 还有很多~

如果一个类方法体的字节码没有通过字节码验证,那肯定是有问题的;但如果一个方法体通过了字节码验证,也不能说明其一定就是安全的。这里涉及了离散数学中一个很著名的问题“Halting Problem”:通俗一点的说法就是,通过程序去校验程序逻辑是无法做到绝对准确的——不能通过程序准确的检查出程序是否能在有限的时间之内结束运行。

字节码验证优化:由于数据流验证的高复杂性,为了避免过多的时间消耗在字节码验证阶段,在JDK 1.6之后的Javac编译器和Java虚拟机中进行了一项优化,给方法体的Code属性的属性表中增加了一项名为“StackMapTable”的属性,这项属性描述了方法体中所有的基本块(Basic Block,按照控制流拆分的代码块)开始时本地变量表和操作栈应用的状态,在字节码验证期间,就不需要根据程序推导这些状态的合法性,只需要检查StackMapTable属性中的记录是否合法即可。这样将字节码验证的类型推导转变为类型检查从而节省一些时间。在JDK 1.6的HotSpot虚拟机中提供了-XX: -UseSplitVerifier选项来关闭这项优化,或者使用参数-XX:FailOverToOldVerifier要求在类型校验失败的时候退回到旧的类型推导方式进行校验。而在JDK 1.7之后,对于主版本大于50的Class文件,使用类型检查来完成数据流分析校验则是唯一的选择,不允许再退回到类型推到的校验方式。

符号引用验证

符号引用验证发生在虚拟机将符号引用转化为直接引用的时候,这个转化动作将在连接的第三阶段——解析阶段中发生。符号引用验证可以看作是对类自身以外(常量池中的各种符号引用)的信息进行匹配性校验,目的是确保解析动作能正常执行,如果无法通过符号引用验证,那么将会抛出一个java.lang.IncompatibleClassChangeError异常的子类,如java.lang.IllegalAccessErrorjava.lang.NoSuchFiledErrorjava.lang.NoSuchMethodError等通常需要校验以下内容:

  1. 符号引用中通过字符串描述的全限定名是否能找到对应的类。
  2. 在制定类中是否存在符合方法的字段描述符以及简单名称所描述的方法和字段。
  3. 符号引用中的类、字段、方法的访问性(private、protected、public、default)是否可悲当前类访问。
  4. 还有很多~

5.2.3 准备

准备阶段是正式为类变量分配内存并设置类变量初始值的阶段,这些变量所使用的内存都将在方法区中进行分配。

  • 这时候进行内存分配的仅包括类变量(被static修饰的变量),而不包括实例变量。实例变量将会在对象实例化随着对象一起分配在Java堆中。
  • 这里所说的初始值“通常情况”下是数据类型的零值,如private static int value=123;,那变量value在准备阶段过后的初始值为0而不是123,而把value赋值为123的putstatic指令是程序被编译后,存放于类构造器<clinit>()方法之中,所以把value赋值为123的动作将在初始化阶段才会执行。
  • “特殊情况”是如果类字段的字段属性表中存在ConstantValue属性,那在准备阶段变量value就会被初始化ConstantValue属性所指定的值。假设上面类变量value的定义变为public static final int value=123;,编译时Javac将会为value生成ConstantValue属性,在准备阶段虚拟机就会根据ConstantValue的设置将value赋值为123。
数据类型 零值 数据类型 零值
int 0 boolean false
long 0L float 0.0f
short (short)0 double 0.0d
char '\u0000' reference null
byte (byte)0

5.2.4 解析

解析阶段是虚拟机将常量池内的符号引用替换为直接引用的过程,符号引用在Class文件中以CONSTANT_Class_info、CONSTANT_Fieldref_info、CONSTANT_Methodref_info等类型的常量出现。

  • 符号引用(Symbolic References):符号引用以一组符号来描述所引用的目标,符号可以是任何形式的字面量,只要使用时能无歧义的定位到目标即可。符号引用与虚拟机实现的内存布局无关,引用的目标并不一定已经加载到内存中。各种虚拟机实现的内存布局可以各不相同,但是他们能接受的符号引用必须都是一致的,因为符号引用的字面量形式明确定义在Java虚拟机规范的Class文件格式中。
  • 直接引用(Direct References):直接引用可以是直接指向目标的指针、相对偏移量或是一个能简介定位到目标的句柄。直接引用是和虚拟机实现的内存布局相关的,同一个符号引用在不同的虚拟机实例上翻译出来的直接引用一般不会相同。如果有了直接引用,那引用的目标必定已经在内存中存在。
解析阶段的时间
  • 虚拟机规范之中并未规定解析阶段发生的具体时间,只要求了在执行anewarray、checkcast、getfield、getstatic、instanceof、invokedynamic、invokeinterface、invokespecial、invokestatic、invokevirtual、ldc、ldc_w、multianewarray、new、putfield和putstatic这16个用于操作符号引用的字节码指令之前,先对他们所使用的符号引用进行解析。
  • 虚拟机实现可以根据需要来判断到底是在类被加载器加载时就对常量池中的符号引用进行解析,还是等到一个符号引用将要被使用前采取解析他。
多次解析的优化
  • 对同一个符号引用进行多次解析请求是很常见的事情,除invokedynamic指令以外,虚拟机实现可以对第一次解析的结果进行缓存(在运行时常量池中记录直接引用,并把常量标识为已解析状态)从而避免解析动作重复进行。
  • 无论是否真正执行了多次解析动作,虚拟机需要保证的是在同一个实体中,如果一个符号引用之前已经被成功解析过,那么后续的引用解析请求就应当一直成功;同样的,如果第一次解析失败了,那么其他指令对这个符号的解析请求也应该受到相同的异常。
  • 对于invokedynamic指令,上面规则则不成立。当碰到某个前面已经由invokedynamic指令触发过解析的符号引用时,并不意味着这个解析结果对于其他invokedynamic指令也同样生效。因为invokedynamic指令的目的本来就是用于动态语言支持(目前仅使用Java语言不会生成这条字节码指令),他所对应的引用称为“动态调用点限定符”(Dynamic Call Site Specifier),这里“动态”的含义就是必须等到程序实际运行到这条指令的时候,解析动作才能进行。相对的,其余可触发解析的指令都是“静态”的,可以在刚刚完成加载阶段,还没有开始执行代码时就进行解析。
解析动作的7类符号引用

解析动作主要针对类或接口、字段、类方法、接口方法、方法类型、方法句柄和调用点限定符7类符号引用进行,分别对应于常量池的CONSTANT_Class_info、CONSTANT_Fieldref_info、CONSTANT_Methodref_info、CONSTANT_InterfaceMethodref_info、CONSTANT_MethodType_info、CONSTANT_MethodHandle_info和CONSTANT_InvokeDynamic_info 7种常量类型。

类或接口的解析

假设当前代码所处的类为D,如果要把一个从未解析过的符号引用N解析为一个类或接口C的直接引用,那虚拟机完成整个解析的过程需要以下3个步骤:

  1. 如果C不是一个数组类型,那虚拟机将会把代表N的全限定名传递给D的类加载器去加载这个类C。在加载过程中,由于元数据验证、字节码验证的需要,又可能触发其他相关类的加载动作,例如加载这个类的父类或实现的接口。一旦这个加载过程出现了任何异常,解析过程就宣告失败。
  2. 如果C是一个数组类型,并且数组的元素类型为对象,也就是N的描述符会是类似[Ljava/lang/Integer的形式,那将会按照第1点的规则加载数组元素类型。如果N的描述符如前面所假设的形式,需要加载的元素类型就是java.lang.Integer,接着由虚拟机生成一个代表此数组维度和元素的数组对象。
  3. 如果上面的步骤没有出现任何异常,那么C在虚拟机中实际上已经成为一个有效的类或接口了,但在解析完成之前还要进行符号引用验证,确认D是否具备对C的访问权限。如果发现不具备访问权限,将抛出java.lang.IllegalAccessError异常。**
字段解析

要解析一个未被解析过的字段符号引用,首先将会对字段表内class_index项中索引的CONSTANT_Class_info符号引用进行解析,也就是解析字段所属的类或接口的符号引用。如果在解析这个类或接口符号引用的过程中出现了任何异常,都会导致字段符号引用解析的失败。如果解析成功完成,那将这个字段所属的类或接口用C表示,虚拟机规范要求按照如下步骤对C进行后续字段的搜索。

  1. 如果C本身就包含了简单名称和字段描述符都与目标相匹配的字段,则返回这个字段的直接引用,查找结束。
  2. 否则,如果在C中实现了接口,将会按照继承关系从下往上递归搜索各个接口和他的父接口,如果接口中包含了简单名称和字段描述符都与目标相匹配的字段,则返回这个字段的直接引用,查找结束。
  3. 否则,如果C不是java.lang.Object的话,将会按照继承关系从下往上递归搜索其父类,如果在父类中包含了简单名称和字段描述符都与目标相匹配的字段,则返回这个字段直接引用,查找结束。
  4. 否则,查找失败,抛出java.lang.NoSuchFieldError异常。
  5. 如果查找过程成功返回了引用,将会对这个字段进行权限验证,如果发现不具备对字段的访问权限,将抛出java.lang.IllegalAccessError异常。
类方法解析

类方法解析的第一个步骤与字段解析一样,也需要先解析出类方法表的class_index项中索引的方法所属的类或接口的符号引用,如果解析成功,我们依然用C表示这个类,接下来虚拟机将会按照如下步骤进行后续的类方法搜索。

  1. 类方法和接口方法符号引用的常量类型定义是分开的,如果在类方法表中发现class_index中索引的C是个接口,那就直接抛出java.lang.IncompatibleClassChangeError异常。
  2. 如果通过了第1步,在类C中查找是否有简单名称和描述符都与目标相匹配的方法,如果有则返回这个方法的直接引用,查找结束。
  3. 否则,在类C的父类中递归查找是否有简单名称和描述符都与目标相匹配的方法,如果有则返回这个方法的直接引用,查找结束。
  4. 否则,在类C实现的接口列表及他们的父接口之中递归查找是否有简单名称和描述符都与目标相匹配的方法,如果存在匹配的方法,说明类C是一个抽象,这时查找结束,抛出java.lang.AbstractMethodError异常。
  5. 否则,宣告方法查找失败,抛出java.lang.NoSuchMethodError。
  6. 如果查找过程成功返回了直接引用,将会对这个方法进行权限验证,如果发现不具备对此方法的访问权限,将抛出java.lang.IllegalAccessError异常。
接口方法解析

接口方法也需要先解析出接口方法表的class_index项中索引的方法所属的类或接口的符号引用,如果解析成功,依然用C表示这个接口,接下来虚拟机将会按照如下步骤进行后续的接口方法搜索。

  1. 与类方法解析不同,如果在接口方法表中发现class_index中的索引C是个类而不是接口,那就直接抛出java.lang.IncompatibleClassChangeError异常。
  2. 否则,在接口C中查找是否有简单名称和描述符都与目标相匹配的方法,如果有则返回这个方法的直接引用,查找结束。
  3. 否则,在接口C的父接口中递归查找,直到java.lang.Object(查找范围会包括Object类)为止,看是否有简单名称和描述符都与目标相匹配的方法,如果有则返回这个方法的直接引用,查找结束。
  4. 否则,宣告方法查找失败,抛出java.lang.NoSuchMethodError异常。
  5. 由于接口中的所有方法默认都是public,所以不存在访问权限的问题,因此接口方法的符号解析应当不会抛出java.lang.IllegalAccessError异常。

5.2.5 初始化

<clinit>()方法
  • 初始化阶段是执行类构造器<clinit>()方法的过程。
  • <clinit>()方法对于类或接口来说并不是必须的,如果一个类中没有静态语句块,也没有对变量的赋值操作,那么编译器可以不为这个类生成<clinit>()方法。
  • <clinit>()方法是由编译器自动收集类中的所有类变量的赋值动作和静态语句块(static{}块)中的语句合并产生的,编译器收集的顺序是由语句在源文件中出现的顺序所决定的,静态语句块中只能访问到定义在静态语句块之前的变量,定义在他之后的变量,在前面的静态语句块可以赋值但是不能访问
public class IllegalForwardReference {
    static {
        i = 0;  // 给变量复制可以正常编译通过
        System.out.print(i);  // 这句编译器会提示“非法向前引用”
    }
    static int i = 1;
}
<clinit>()方法与继承
  • <clinit>()方法与类的构造函数(或者说实例构造器<init>())不同,他不需要显示的调用父类构造器,虚拟机会保证在子类的<clinit>()方法执行之前,父类的<clinit>()方法已经执行完毕。因此在虚拟机中第一个被执行的<clinit>()方法的类肯定是java.lang.Object。
  • 由于父类的<client>()方法先执行,也就意味着父类中定义的静态语句块要优先于子类的变量赋值操作。
class Parent {
    public static int A = 1;
    static {
        A = 2;
    }
}

class Sub extends Parent {
    public static int B = A;
}

public class Main {
    public static void main(String[] args) {
        // 字段B的值将会是2而不是1。
        System.out.println(Sub.B);
    }
}
接口中的<clinit>()方法
  • 接口中不能使用静态语句块,但仍然有变量初始化的赋值操作,因此接口与类一样都会生成<clinit>()方法
  • 但接口与类不同的是,执行接口的<clinit>()方法不需要先执行父接口的<clinit>()方法。只有当父接口中定义的变量使用时,父接口才会初始化。
  • 接口的实现类在初始化时也一样不会执行接口的<clinit>()方法。
<clinit>()方法加锁
  • 虚拟机会保证一个类的<clinit>()方法在多线程环境中被正确的加锁、同步,如果多个线程同时去初始化一个类,那么只会有一个线程去执行这个类的<clinit>()方法,其他线程都需要阻塞等待,直到活动线程执行<clinit>()方法完毕。
  • 如果在一个类的<clinit>()方法中有耗时很长的操作,就可能造成多个进程阻塞,在实际应用中这种阻塞往往是很隐蔽的。
  • 其他线程虽然会被阻塞,但如果执行<clinit>()方法的那条线程退出<clinit>()方法后,其他线程唤醒之后不会再次进入<clinit>()方法。同一个类加载器下,一个类只会初始化一次。
public class Test {
    static class DeadLoopClass {
        static {
            // 如果不加上这个if语句,编译器将提示“Initializer does not complete normally”并拒绝编译
            if (true) {
                System.out.println(Thread.currentThread() + "init DeadLoopClass");
                while (true) {
                }
            }
        }
    }

    public static void main(String[] args) {
        Runnable script = () -> {
            System.out.println(Thread.currentThread() + "start");
            new DeadLoopClass();
            System.out.println(Thread.currentThread() + " run over");
        };

        new Thread(script).start();
        new Thread(script).start();
    }
}

运行结果如下,即一条线程在死循环以模拟长时间操作,另外一条线程在阻塞等待。

Thread[Thread-0,5,main]start
Thread[Thread-1,5,main]start
Thread[Thread-0,5,main]init DeadLoopClass

5.3 类加载器

把类加载阶段中的“通过一个类的全限定名来获取描述此类的二进制字节流”这个动作放到Java虚拟机外部去实现,以便让应用程序自己决定如何去获取所需要的类。实现这个动作的代码模块称为“类加载器”。

5.3.1 类与类加载器

类加载器虽然只用于实现类的加载动作,但在Java程序中起到的作用却远远不限于类加载阶段。

类加载器的独立命名空间

对于任意一个类,都需要由加载他的类加载器和这个类本身一同确立其在Java虚拟机中的唯一性,每一个类加载器,都拥有一个独立的类名称空间。这句话可以表达得更通俗一些:比较两个类是否“相等”,只有在两个类是由同一个类加载的前提下才有意义。否则ff即使这两个类来源于同一个Class文件,被同一个虚拟机加载,只要加载他们的类加载器不同,那这两个类就必定不想等。这里所指的“相等”,包括代表类的Class对象的equals()方法、isAssignableFrom()方法、isInstance()方法的返回结果,也包括使用instanceof关键字做对象所属关系判定等情况。

public class Main {
    public static void main(String[] args) throws Exception {
        ClassLoader classLoader = new ClassLoader() {
            @Override
            public Class<?> loadClass(String name) throws ClassNotFoundException {
                try {
                    String fileName = name.substring(name.lastIndexOf('.') + 1) + ".class";
                    InputStream is = getClass().getResourceAsStream(fileName);
                    if (is == null) {
                        return super.loadClass(name);
                    }
                    byte[] bytes = new byte[is.available()];
                    is.read(bytes);
                    return defineClass(name, bytes, 0, bytes.length);
                } catch (IOException e) {
                    throw new ClassNotFoundException(name);
                }
            }
        };

        // 使用这个类加载器去加载了一个名为"s2.Main"的类,并实例化了这个类的对象。
        Object obj = classLoader.loadClass("s2.Main").newInstance();
        System.out.println(obj.getClass());
        System.out.println(obj instanceof Main);
    }
}
# 这个对象确实是类com.test.虚拟机类加载机制.ClassLoaderTest实例化的对象
class s2.Main
# 因为虚拟机存在了两个ClassLoaderTest类,一个是由系统应用程序类加载器加载的,另外一个是由我们自定义的类加载器加载的
# 虽然都来自同一个Class文件,但依然是两个独立的类,做对象所属类型检查时结果自然为false。
false

5.3.2 双亲委派机制

类加载器的类型
  1. 启动类加载器(Bootstrap ClassLoader):又叫根加载器,这个类加载器是虚拟机的一部分,负责将放在<JAVA_HOME>\lib目录中的,或者被-Xbootclasspath参数指定的路径中的,并且是被虚拟机识别的(仅按照文件名识别)类库加载到虚拟机内存中。启动类加载器不能被Java程序直接引用,获取启动类加载器时返回的时null。
  2. 扩展类加载器(Extension ClassLoader):这个加载器由sun.misc.Launcher$ExtClassLoader实现,负责加载<JAVA_HOME>\lib\ext目录中的,或者被java.ext.dirs系统变量所指定的路径中的所有类库,继承自java.lang.ClassLoader,由Java语言实现,独立于虚拟机,可以直接使用扩展类加载器。
  3. 应用程序类加载器(Application ClassLoader):由sun.misc.Launcher$AppClassLoader实现,是ClassLoader中的getSystemClassLoader方法的返回值。负责加载用户类路径上所指定的类库。也是由Java语言实现,独立于虚拟机,并且继承自java.lang.ClassLoader。
双亲委派模型
类加载器双亲委派模型

上图所示的类加载器之间的这种层次关系,就称为类加载器的双亲委派模型(Parent Delegation Model)。该模型要求除了顶层的启动类加载器外,其余的类加载器都应当有自己的父类加载器。子类加载器和父类加载器一般不是以继承(Inheritance)的关系来实现,而是通过组合(Composition)关系来复用父加载器的代码。

双亲委派模型工作原理

如果一个类加载器收到了类加载的请求,它首先不会自己去尝试加载这个类,而是把这个请求委派给父类加载器去完成,每一个层次的加载器都是如此。因此所有的类加载请求都会传给顶层的启动类加载器,只有当父加载器反馈自己无法完成该加载请求(该加载器的搜索范围中没有找到对应的类)时,子加载器才会尝试自己去加载。

双亲委派模型的好处
  • Java类随着它的类加载器一起具备了一种带有优先级的层次关系。例如java.lang.Object类,无论哪个类加载器去加载该类,最终都是由启动类加载器进行加载,因此Object类在程序的各种类加载器环境中都是同一个类。
  • 如果不使用该模型的话,如果用户自定义一个java.lang.Object类且存放在classpath中,那么系统中将会出现多个Object类,应用程序也会变得很混乱。如果我们自定义一个rt.jar中已有类的同名Java类,会发现JVM可以正常编译,但该类永远无法被加载运行。
双亲委派的实现

实现双亲委派的代码都集中在java.lang.ClassLoader的loadClass()方法之中,逻辑清晰易懂:

  1. 先检查是否已经被加载过,若没有加载则调用父加载器的loadClass()方法,
  2. 若父加载器为空则默认使用启动类加载器作为父加载器。
  3. 如果父类加载失败,抛出ClassNotFoundException异常后,再调用自己的findClass()方法进行加载。
    protected Class<?> loadClass(String name, boolean resolve) throws ClassNotFoundException {
        synchronized (getClassLoadingLock(name)) {
            // 首先检查类是否被加载过
            Class<?> c = findLoadedClass(name);
            if (c == null) {
                long t0 = System.nanoTime();
                try {
                    if (parent != null) {
                        c = parent.loadClass(name, false);
                    } else {
                        c = findBootstrapClassOrNull(name);
                    }
                } catch (ClassNotFoundException e) {
                    // 说明父类加载器无法完成加载请求,并抛出ClassNotFoundException
                }

                if (c == null) {
                    // 在父类加载器无法加载的时候,调用本身的findClass方法进行类加载
                    long t1 = System.nanoTime();
                    c = findClass(name);

                    // this is the defining class loader; record the stats
                    sun.misc.PerfCounter.getParentDelegationTime().addTime(t1 - t0);
                    sun.misc.PerfCounter.getFindClassTime().addElapsedTimeFrom(t1);
                    sun.misc.PerfCounter.getFindClasses().increment();
                }
            }
            if (resolve) {
                resolveClass(c);
            }
            return c;
        }
    }

5.3.3 破坏双亲委派模型

双亲委派模型并不是一个强制性的约束模型,而是Java设计者推荐给开发的类加载器实现方式,大部分的类加载器都遵循这个模型,但也有例外。

双亲委派模型的第一次“被破坏”
  • 双亲委派模型的第一次“被破坏”其实发生在双亲委派模型出现之前——即JDK1.2发布之前,由于双亲委派模型在JDK1.2之后才被引入,而类加载器和抽象类java.lang.ClassLoader则在JDK1.0时代就已经存在,面对已经存在的用户自定义类加载器的实现代码,Java设计者引入双亲委派模型时不得不做出一些妥协。
  • 为了向前兼容,JDK1.2之后的java.lang.ClassLoader添加了一个新的protected方法findClass(),在此之前,用户去继承java.lang.ClassLoader的唯一目的就是为了重写loadClass()方法,因为虚拟机在进行类加载的时候会调用加载器的私有方法loadClassInternal(),而这个方法的唯一逻辑就是去调用自己的loadClass()。
  • JDK1.2之后已不提倡用户去覆盖loadClass()方法,而应当把自己的类加载逻辑写到findClass()方法中,在loadClass()方法的逻辑里如果父类加载失败,则会调用自己的findClass()方法来完成加载,这样就可以保证新写出来的类加载器是符合双亲委派规则的。
双亲委派模型的第二次“被破坏”

双亲委派模型的缺陷:双亲委派模型的第二次“被破坏”是由这个模型自身的缺陷导致的,基础类可能会调用回用户的代码,一个典型的例子就是JNDI(Java Naming and Directory Interface,Java命名和目录接口)服务。JNDI现在已经是Java标准服务,它的代码由启动类加载器去加载,但JNDI的目的就是对资源进行集中管理和查找,它需要调用由独立厂商实现并部署在应用程序的ClassPath下的JNDI接口提供者(SPI,Server Provider Interface)的代码,但启动类加载器不可能“认识”这些代码。

线程上线文类加载器:为了解决这个问题,Java设计团队只好引入了一个不太优雅的设计:线程上线文类加载器。这个类加载器可以通过java.lang.Thread类的setContextClassLoader()方法进行设置,如果创建线程时还未设置,它将会从父线程中继承一个;如果在应用程序的全局范围内都没有设置过的话,那这个类加载器默认就是应用程序类加载器。JNDI服务使用这个线程上下文类加载器所需要的SPI代码,也就是父类加载器请求子类加载器去完成类加载的动作。这种行为实际上就是打通了双亲委派模型的层次结构类逆向使用类加载器,实际上已经违背了双亲委派模型的一般性原则,但这也就是无可能奈何的事情。Java中所有涉及SPI的加载动作基本上都采用这种方式,例如JNDI、JDBC、JCE、JAXB和JBI等。

双亲委派模型的第三次“被破坏”

双亲委派模型的第三次“被破坏”是由于用户对程序动态性的追求而导致的,这里所说的“动态性”指的是当前一些非常“热门”的名词:代码热替换、模块热部署等。目前OSGi已经成为业界“事实上”的Java模块化标准,而OSGi实现模块化热部署的关键则是它自定义的类加载器。每一个程序模块(OSGi中成为Bundle)都有一个自己的类加载器,当需要更换一个Bundle时,就把Bundle连同类加载器一期替换掉以实现代码的热替换。在OSGi环境下,类加载器不再是双亲委派模型中的树状结构,而是进一步发展为更加复杂的网状结构,当收到类加载器请求时,OSGi将按照下面的顺序进行类搜索:

  1. 将以java.*开头的类委派给父类加载器加载。
  2. 否则,将委派列表名单内的类委派给父类加载器加载。
  3. 否则,将Import列表中的类委派给Export这个类的Bundle的类加载器加载。
  4. 否则,查找当前Bundle的ClassPath,使用自己的类加载器加载。
  5. 否则,查找类是否在自己的Fragment Bundle中,如果在,则委派给Fragment Bundle的类加载器加载。
  6. 否则,查找Dynamic Import列表的Bundle,委派给对应的Bundle的类加载器加载。
  7. 否则,查找失败。

上面的查找顺序中只有开头两点仍然符合双亲委派规则,其余的类查找都是在平级的类加载器中进行的。OSGi中对类加载器的使用是很值得学习的,弄懂了OSGi的实现,就可以算是掌握了类加载器的精髓。

相关文章

网友评论

    本文标题:JVM详解5.类加载机制

    本文链接:https://www.haomeiwen.com/subject/hyfihqtx.html