美文网首页《深度学习100例》机器学习100天
深度学习100例-卷积神经网络(CNN)彩色图片分类 | 第2天

深度学习100例-卷积神经网络(CNN)彩色图片分类 | 第2天

作者: K同学啊 | 来源:发表于2021-10-20 09:52 被阅读0次

    🔥本文 GitHub https://github.com/kzbkzb/Python-AI已收录

    🚀 我的环境:

    • 语言环境:Python3.6.5
    • 编译器:jupyter notebook
    • 深度学习环境:TensorFlow2.4.1
    • 数据和代码:📌【传送门】

    🚀 来自专栏:《深度学习100例》

    如果你是一名深度学习小白可以先看看我这个专门为你写的专栏:《小白入门深度学习》


    一、前期工作

    1. 设置GPU

    如果使用的是CPU可以忽略这步

    import tensorflow as tf
    gpus = tf.config.list_physical_devices("GPU")
    
    if gpus:
        gpu0 = gpus[0] #如果有多个GPU,仅使用第0个GPU
        tf.config.experimental.set_memory_growth(gpu0, True) #设置GPU显存用量按需使用
        tf.config.set_visible_devices([gpu0],"GPU")
    

    2. 导入数据

    import tensorflow as tf
    from tensorflow.keras import datasets, layers, models
    import matplotlib.pyplot as plt
    
    (train_images, train_labels), (test_images, test_labels) = datasets.cifar10.load_data()
    

    3. 归一化

    # 将像素的值标准化至0到1的区间内。
    train_images, test_images = train_images / 255.0, test_images / 255.0
    
    train_images.shape,test_images.shape,train_labels.shape,test_labels.shape
    
    ((50000, 32, 32, 3), (10000, 32, 32, 3), (50000, 1), (10000, 1))
    

    4. 可视化

    class_names = ['airplane', 'automobile', 'bird', 'cat', 'deer','dog', 'frog', 'horse', 'ship', 'truck']
    
    plt.figure(figsize=(20,10))
    for i in range(20):
        plt.subplot(5,10,i+1)
        plt.xticks([])
        plt.yticks([])
        plt.grid(False)
        plt.imshow(train_images[i], cmap=plt.cm.binary)
        plt.xlabel(class_names[train_labels[i][0]])
    plt.show()
    
    在这里插入图片描述

    二、构建CNN网络

    model = models.Sequential([
        layers.Conv2D(32, (3, 3), activation='relu', input_shape=(32, 32, 3)), #卷积层1,卷积核3*3
        layers.MaxPooling2D((2, 2)),                   #池化层1,2*2采样
        layers.Conv2D(64, (3, 3), activation='relu'),  #卷积层2,卷积核3*3
        layers.MaxPooling2D((2, 2)),                   #池化层2,2*2采样
        layers.Conv2D(64, (3, 3), activation='relu'),  #卷积层3,卷积核3*3
        
        layers.Flatten(),                      #Flatten层,连接卷积层与全连接层
        layers.Dense(64, activation='relu'),   #全连接层,特征进一步提取
        layers.Dense(10)                       #输出层,输出预期结果
    ])
    
    model.summary()  # 打印网络结构
    
    Model: "sequential"
    _________________________________________________________________
    Layer (type)                 Output Shape              Param #   
    =================================================================
    conv2d (Conv2D)              (None, 30, 30, 32)        896       
    _________________________________________________________________
    max_pooling2d (MaxPooling2D) (None, 15, 15, 32)        0         
    _________________________________________________________________
    conv2d_1 (Conv2D)            (None, 13, 13, 64)        18496     
    _________________________________________________________________
    max_pooling2d_1 (MaxPooling2 (None, 6, 6, 64)          0         
    _________________________________________________________________
    conv2d_2 (Conv2D)            (None, 4, 4, 64)          36928     
    _________________________________________________________________
    flatten (Flatten)            (None, 1024)              0         
    _________________________________________________________________
    dense (Dense)                (None, 64)                65600     
    _________________________________________________________________
    dense_1 (Dense)              (None, 10)                650       
    =================================================================
    Total params: 122,570
    Trainable params: 122,570
    Non-trainable params: 0
    _________________________________________________________________
    

    三、编译

    model.compile(optimizer='adam',
                  loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
                  metrics=['accuracy'])
    

    四、训练模型

    history = model.fit(train_images, train_labels, epochs=10, 
                        validation_data=(test_images, test_labels))
    
    Epoch 1/10
    1563/1563 [==============================] - 9s 4ms/step - loss: 1.7862 - accuracy: 0.3390 - val_loss: 1.2697 - val_accuracy: 0.5406
    Epoch 2/10
    1563/1563 [==============================] - 5s 3ms/step - loss: 1.2270 - accuracy: 0.5595 - val_loss: 1.0731 - val_accuracy: 0.6167
    Epoch 3/10
    1563/1563 [==============================] - 5s 3ms/step - loss: 1.0355 - accuracy: 0.6337 - val_loss: 0.9678 - val_accuracy: 0.6610
    Epoch 4/10
    1563/1563 [==============================] - 5s 3ms/step - loss: 0.9221 - accuracy: 0.6727 - val_loss: 0.9589 - val_accuracy: 0.6648
    Epoch 5/10
    1563/1563 [==============================] - 5s 3ms/step - loss: 0.8474 - accuracy: 0.7022 - val_loss: 0.8962 - val_accuracy: 0.6853
    Epoch 6/10
    1563/1563 [==============================] - 5s 3ms/step - loss: 0.7814 - accuracy: 0.7292 - val_loss: 0.9124 - val_accuracy: 0.6873
    Epoch 7/10
    1563/1563 [==============================] - 5s 3ms/step - loss: 0.7398 - accuracy: 0.7398 - val_loss: 0.8924 - val_accuracy: 0.6929
    Epoch 8/10
    1563/1563 [==============================] - 5s 3ms/step - loss: 0.7008 - accuracy: 0.7542 - val_loss: 0.9809 - val_accuracy: 0.6854
    Epoch 9/10
    1563/1563 [==============================] - 5s 3ms/step - loss: 0.6474 - accuracy: 0.7732 - val_loss: 0.8549 - val_accuracy: 0.7137
    Epoch 10/10
    1563/1563 [==============================] - 5s 3ms/step - loss: 0.6041 - accuracy: 0.7889 - val_loss: 0.8909 - val_accuracy: 0.7046
    

    五、预测

    通过模型进行预测得到的是每一个类别的概率,数字越大该图片为该类别的可能性越大

    plt.imshow(test_images[1])
    
    import numpy as np
    
    pre = model.predict(test_images)
    print(class_names[np.argmax(pre[1])])
    
    ship
    

    六、模型评估

    import matplotlib.pyplot as plt
    
    plt.plot(history.history['accuracy'], label='accuracy')
    plt.plot(history.history['val_accuracy'], label = 'val_accuracy')
    plt.xlabel('Epoch')
    plt.ylabel('Accuracy')
    plt.ylim([0.5, 1])
    plt.legend(loc='lower right')
    plt.show()
    
    test_loss, test_acc = model.evaluate(test_images,  test_labels, verbose=2)
    
    在这里插入图片描述
    313/313 - 0s - loss: 0.8909 - accuracy: 0.7046
    
    print(test_acc)
    
    0.7045999765396118
    

    🔥本文 GitHub https://github.com/kzbkzb/Python-AI已收录

    相关文章

      网友评论

        本文标题:深度学习100例-卷积神经网络(CNN)彩色图片分类 | 第2天

        本文链接:https://www.haomeiwen.com/subject/iaftaltx.html