美文网首页
八、坐标系

八、坐标系

作者: 凉夜lrs | 来源:发表于2020-10-27 15:57 被阅读0次

OpenGL希望在每次顶点着色器运行后,可见的所有顶点都为标准化设备坐标(Normalized Device Coordinate, NDC)。也就是说,每个顶点的x,y,z坐标都应该在-1.0到1.0之间,超出这个坐标范围的顶点都将不可见。我们通常会自己设定一个坐标的范围,之后再在顶点着色器中将这些坐标变换为标准化设备坐标。然后将这些标准化设备坐标传入光栅器(Rasterizer),将它们变换为屏幕上的二维坐标或像素。

将坐标变换为标准化设备坐标,接着再转化为屏幕坐标的过程通常是分步进行的,也就是类似于流水线那样子。在流水线中,物体的顶点在最终转化为屏幕坐标之前还会被变换到多个坐标系统(Coordinate System)。将物体的坐标变换到几个过渡坐标系(Intermediate Coordinate System)的优点在于,在这些特定的坐标系统中,一些操作或运算更加方便和容易(例如,当需要对物体进行修改的时候,在局部空间中来操作会更说得通;如果要对一个物体做出一个相对于其它物体位置的操作时,在世界坐标系中来做这个才更说得通,等等)。比较重要的总共有5个不同的坐标系统:

  • 局部空间(Local Space,或者称为物体空间(Object Space))
  • 世界空间(World Space)
  • 观察空间(View Space,或者称为视觉空间(Eye Space))
  • 裁剪空间(Clip Space)
  • 屏幕空间(Screen Space)

为了将坐标从一个坐标系变换到另一个坐标系,需要用到几个变换矩阵,最重要的几个分别是模型(Model)、观察(View)、投影(Projection)三个矩阵。顶点坐标起始于局部空间(Local Space),在这里它称为局部坐标(Local Coordinate),它在之后会变为世界坐标(World Coordinate),观察坐标(View Coordinate),裁剪坐标(Clip Coordinate),并最后以屏幕坐标(Screen Coordinate)的形式结束。下面的这张图展示了整个流程以及各个变换过程做了什么:

image.png
  1. 局部空间是指物体所在的坐标空间,即对象最开始所在的地方。想象你在一个建模软件(比如说Blender)中创建了一个立方体。你创建的立方体的原点有可能位于(0, 0, 0),即便它有可能最后在程序中处于完全不同的位置。甚至有可能你创建的所有模型都以(0, 0, 0)为初始位置(译注:然而它们会最终出现在世界的不同位置)。所以,你的模型的所有顶点都是在局部空间中:它们相对于你的物体来说都是局部的。
  2. 世界空间坐标:顶点相对于(游戏)世界的坐标。如果你希望将物体分散在世界上摆放(特别是非常真实的那样),这就是你希望物体变换到的空间。物体的坐标将会从局部变换到世界空间;该变换是由模型矩阵(Model Matrix)实现的。模型矩阵是一种变换矩阵,它能通过对物体进行位移、缩放、旋转来将它置于它本应该在的位置或朝向。
  3. 观察空间是从摄像机的视角所观察到的空间(也称为摄像机空间(Camera Space))。通常是由一系列的位移和旋转的组合来完成,平移/旋转场景从而使得特定的对象被变换到摄像机的前方。这些组合在一起的变换通常存储在一个观察矩阵(View Matrix)里,它被用来将世界坐标变换到观察空间。
  4. 坐标到达观察空间之后,我们需要将其投影到裁剪坐标。裁剪坐标会被处理至-1.0到1.0的范围内,并判断哪些顶点将会出现在屏幕上。投影矩阵(Projection Matrix)指定了一个范围的坐标,比如在每个维度上的-1000到1000。投影矩阵接着会将在这个指定的范围内的坐标变换为标准化设备坐标的范围(-1.0, 1.0)。如果只是图元(Primitive),例如三角形,的一部分超出了裁剪体积(Clipping Volume),则OpenGL会重新构建这个三角形为一个或多个三角形让其能够适合这个裁剪范围。一旦所有顶点被变换到裁剪空间,最终的操作——透视除法(Perspective Division)将会执行,在这个过程中我们将位置向量的x,y,z分量分别除以向量的齐次w分量;透视除法是将4D裁剪空间坐标变换为3D标准化设备坐标的过程。这一步会在每一个顶点着色器运行的最后被自动执行。
  5. 最后,使用一个叫做视口变换(Viewport Transform)的过程将裁剪坐标变换为屏幕坐标。视口变换将位于-1.0到1.0范围的坐标变换到由glViewport函数所定义的坐标范围内。最后变换出来的坐标将会送到光栅器,将其转化为片段。

投影

由投影矩阵创建的观察箱(Viewing Box)被称为平截头体(Frustum),每个出现在平截头体范围内的坐标都会最终出现在用户的屏幕上。将特定范围内的坐标转化到标准化设备坐标系的过程(而且它很容易被映射到2D观察空间坐标)被称之为投影(Projection),因为使用投影矩阵能将3D坐标投影(Project)到很容易映射到2D的标准化设备坐标系中。

投影矩阵可以为两种不同的形式,每种形式都定义了不同的平截头体。我们可以选择创建一个正射投影矩阵(Orthographic Projection Matrix)或一个透视投影矩阵(Perspective Projection Matrix)。

正射投影

正射投影矩阵定义了一个类似立方体的平截头箱,它定义了一个裁剪空间,在这空间之外的顶点都会被裁剪掉。创建一个正射投影矩阵需要指定可见平截头体的宽、高和长度。在使用正射投影矩阵变换至裁剪空间之后处于这个平截头体内的所有坐标将不会被裁剪掉。它的平截头体看起来像一个容器:

image.png

上面的平截头体定义了可见的坐标,它由由宽、高、近(Near)平面和远(Far)平面所指定。任何出现在近平面之前或远平面之后的坐标都会被裁剪掉。正射平截头体直接将平截头体内部的所有坐标映射为标准化设备坐标,因为每个向量的w分量都没有进行改变;如果w分量等于1.0,透视除法则不会改变这个坐标。

要创建一个正射投影矩阵,我们可以使用GLM的内置函数glm::ortho:

glm::ortho(0.0f, 800.0f, 0.0f, 600.0f, 0.1f, 100.0f);

前两个参数指定了平截头体的左右坐标,第三和第四参数指定了平截头体的底部和顶部。通过这四个参数我们定义了近平面和远平面的大小,然后第五和第六个参数则定义了近平面和远平面的距离。这个投影矩阵会将处于这些x,y,z值范围内的坐标变换为标准化设备坐标。

正射投影矩阵直接将坐标映射到2D平面中,即你的屏幕,但实际上一个直接的投影矩阵会产生不真实的结果,因为这个投影没有将透视(Perspective)考虑进去。所以需要透视投影矩阵来解决这个问题。

透视投影

越远的东西看起来更小,两条线在很远的地方看起来会相交,这正是透视投影想要模仿的效果。一个透视平截头体可以被看作一个不均匀形状的箱子,在这个箱子内部的每个坐标都会被映射到裁剪空间上的一个点。下面是一张透视平截头体的图片:

image.png

透视投影矩阵将给定的平截头体范围映射到裁剪空间,除此之外还修改了每个顶点坐标的w值,从而使得离观察者越远的顶点坐标w分量越大。之后通过透视除法,顶点坐标的每个分量都会除以它的w分量,距离观察者越远顶点坐标就会越小。

在GLM中可以这样创建一个透视投影矩阵:

glm::perspective(glm::radians(45.0f), (float)width/(float)height, 0.1f, 100.0f);

它的第一个参数定义了fov的值,它表示的是视野(Field of View),并且设置了观察空间的大小。如果想要一个真实的观察效果,它的值通常设置为45.0f,但想要一个末日风格的结果可以将其设置一个更大的值。第二个参数设置了宽高比,由视口的宽除以高所得。第三和第四个参数设置了平截头体的近和远平面。通常设置近距离为0.1f,而远距离设为100.0f。所有在近平面和远平面内且处于平截头体内的顶点都会被渲染。

当你把透视矩阵的 near 值设置太大时(如10.0f),OpenGL会将靠近摄像机的坐标(在0.0f和10.0f之间)都裁剪掉,这会导致一个你在游戏中很熟悉的视觉效果:在太过靠近一个物体的时候你的视线会直接穿过去。

OpenGL中的使用

顶点着色器

#version 330 core
layout (location = 0) in vec3 aPos;
...
uniform mat4 model;
uniform mat4 view;
uniform mat4 projection;

void main()
{
    // 注意乘法要从右向左读
    gl_Position = projection * view * model * vec4(aPos, 1.0);
    ...
}

应该将矩阵传入着色器(这通常在每次的渲染迭代中进行,因为变换矩阵会经常变动)。

深度缓冲(Depth Buffer)

OpenGL是一个三角形一个三角形地来绘制立方体的,所以即便之前那里有东西它也会覆盖之前的像素。因为这个原因,有些三角形会被绘制在其它三角形上面,虽然它们本不应该是被覆盖的。Z缓冲(Z-buffer)允许OpenGL决定何时覆盖一个像素而何时不覆盖。通过使用Z缓冲,可以配置OpenGL来进行深度测试。

OpenGL存储它的所有深度信息于一个Z缓冲(Z-buffer)中,也被称为深度缓冲(Depth Buffer)。GLFW会自动为你生成这样一个缓冲(就像它也有一个颜色缓冲来存储输出图像的颜色)。深度值存储在每个片段里面(作为片段的z值),当片段想要输出它的颜色时,OpenGL会将它的深度值和z缓冲进行比较,如果当前的片段在其它片段之后,它将会被丢弃,否则将会覆盖。这个过程称为深度测试(Depth Testing),它是由OpenGL自动完成的。

然而,如果想要确定OpenGL真的执行了深度测试,首先要告诉OpenGL启用深度测试;它默认是关闭的。可以通过glEnable函数来开启深度测试。glEnable和glDisable函数允许启用或禁用某个OpenGL功能。这个功能会一直保持启用/禁用状态,直到另一个调用来禁用/启用它。现在我们想启用深度测试,需要开启GL_DEPTH_TEST:

glEnable(GL_DEPTH_TEST);

因为使用了深度测试,所以在每次渲染迭代之前清除深度缓冲(否则前一帧的深度信息仍然保存在缓冲中)。就像清除颜色缓冲一样,可以通过在glClear函数中指定DEPTH_BUFFER_BIT位来清除深度缓冲:

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

相关文章

  • 八、坐标系

    OpenGL希望在每次顶点着色器运行后,可见的所有顶点都为标准化设备坐标(Normalized Device Co...

  • 八、坐标系

    由于MRI图像与物理对象相关,我们需要某种方法将图像中的数据点与物理对象中的所有空间位置关联起来。我们使用坐标系来...

  • 单目相机标定___一、原理

    原理:成像模型的坐标系为:世界坐标系 --> 相机坐标系 --> 图像坐标系 --> 像素坐标系 先说从相机坐标系...

  • WebGL知识点

    数学基础 坐标系:笛卡尔坐标系、极坐标等多坐标系:世界坐标系、物体坐标系、摄像机坐标系、惯性坐标系;向量、向量运算...

  • 2019-01-16echarts知识点

    echarts中的坐标系统分为,直角坐标系,极坐标系,雷达坐标系,地图坐标系

  • coreGraphics

    1. iOS 坐标系 NSView坐标系 : 左手坐标系 原点左上角UIView坐标系 : 左手坐标系 原点左...

  • 相机那些事(二)—— 单目成像原理与坐标变换

    一、单目相机成像原理 成像模型的坐标系为:世界坐标系 --> 相机坐标系 --> 图像坐标系 --> 像素坐标系 ...

  • 机床坐标系和工件坐标系和局部坐标系

    1:机床坐标系: 机床坐标系也称机械坐标系,它是CNC进行坐标计算的基准坐标系,是机床固有的坐标系,机床坐标系的原...

  • Android进阶笔记-6. 从源码看View体系(坐标,滑动,

    坐标系 Android中有两种坐标系,Android坐标系和视图坐标系 Android坐标系 定义:屏幕左上角顶点...

  • OpenGL下坐标系统解析

    左手坐标系和右手坐标系 OpenGL中的物体、世界、照相机坐标系都属于右手坐标系,而规范化设备坐标系使用左手坐标系...

网友评论

      本文标题:八、坐标系

      本文链接:https://www.haomeiwen.com/subject/ibvtvktx.html