美文网首页微生物16s测序
Tax4Fun2 16s扩增子群落功能预测 使用小结

Tax4Fun2 16s扩增子群落功能预测 使用小结

作者: leoxiaobei | 来源:发表于2021-12-08 23:36 被阅读0次

    Tax4Fun2是一个基于16S rRNA数据集预测微生物群落功能的R包,是Tax4Fun的升级版本。
    其发布在Github项目bwemheu / Tax4Fun2下,目前已更新到Tax4Fun2 v1.1.6
    下面以自带示例简单学习一下它的使用过程:

    1.下载、安装和配置
    #shell
    wget https://github.com/bwemheu/Tax4Fun2/releases/download/v1.1.6/Tax4Fun2_1.1.6.tar.gz
    
    #R
    install.packages(pkgs = "Tax4Fun2_1.1.6.tar.gz", repos = NULL, source = TRUE)
    library(Tax4Fun2)
    
    #简单配置
    buildReferenceData(path_to_working_directory = ".")#构建参考数据库
    buildDependencies(path_to_reference_data = "./Tax4Fun2_ReferenceData_v2")#安装依赖程序blast
    getExampleData(path_to_working_directory = ".")#下载并构建 Tax4Fun2 测试数据
    
    2.仅使用默认参考数据进行功能预测
    ####物种注释####
    runRefBlast(path_to_otus = 'KELP_otus.fasta', 
                path_to_reference_data = './Tax4Fun2_ReferenceData_v2', 
                path_to_temp_folder = 'Kelp_Ref99NR', 
                database_mode = 'Ref99NR', 
                use_force = TRUE, 
                num_threads = 4)
    
    ####预测群落功能####
    makeFunctionalPrediction(path_to_otu_table = 'KELP_otu_table.txt', 
                             path_to_reference_data = './Tax4Fun2_ReferenceData_v2',
                             path_to_temp_folder = 'Kelp_Ref99NR', 
                             database_mode = 'Ref99NR',
                             normalize_by_copy_number = TRUE, #默认,用参考数据库中每个序列计算的16S rRNA拷贝数的平均值进行归一化
                             min_identity_to_reference = 0.97, 
                             normalize_pathways = FALSE)#默认,将把每个KO的相对丰度关联到它所属的每个路径上
    #或者
    makeFunctionalPrediction(path_to_otu_table = 'KELP_otu_table.txt', 
                             path_to_reference_data = './Tax4Fun2_ReferenceData_v2', 
                             path_to_temp_folder = 'Kelp_Ref99NR', 
                             database_mode = 'Ref99NR', 
                             normalize_by_copy_number = TRUE, 
                             min_identity_to_reference = 0.97, 
                             normalize_pathways = TRUE)#非默认,将把每个KO的相对丰度平均分配到所有它所属的路径上。
    
    3.使用默认数据库和用户生成的数据库进行功能预测,需要自己从源文件构建数据库,一共需要三步
    ####提取SSU序列####
    # 1.1 Extracting SSU sequences from a single genome
    extractSSU(genome_file = "OneProkaryoticGenome.fasta", file_extension = "fasta", 
               path_to_reference_data = "Tax4Fun2_ReferenceData_v2")
    # 1.1 Extracting SSU sequences from multiple genomes
    extractSSU(genome_folder = "MoreProkaryoticGenomes", file_extension = "fasta",
               path_to_reference_data = "Tax4Fun2_ReferenceData_v2")
    
    ####为原核基因组分配功能####
    # 2.1 Assigning function to a single genome
    assignFunction(genome_file = "OneProkaryoticGenome.fasta", file_extension = "fasta", 
                   path_to_reference_data = "Tax4Fun2_ReferenceData_v2", num_of_threads = 8, fast = TRUE)
    # 2.2 Assigning function to multiple genomes
    assignFunction(genome_folder = "MoreProkaryoticGenomes/", file_extension = "fasta",
                   path_to_reference_data = "Tax4Fun2_ReferenceData_v2", num_of_threads = 1, fast = TRUE)
    
    ####生成参考数据(程序提供了 3 种方法)####
    # 3.1 Generate user-defined reference data without uclust from a single genome
    generateUserData(path_to_reference_data = './Tax4Fun2_ReferenceData_v2', path_to_user_data = '.',
                     name_of_user_data = 'User_Ref0', SSU_file_extension = '_16SrRNA.ffn', KEGG_file_extension = '_funPro.txt')
    # 3.2 Generate user-defined reference data without uclust
    generateUserData(path_to_reference_data = './Tax4Fun2_ReferenceData_v2', path_to_user_data = 'MoreProkaryoticGenomes', 
                     name_of_user_data = 'User_Ref1', SSU_file_extension = '_16SrRNA.ffn', KEGG_file_extension = '_funPro.txt')
    # 3.3 Generate user-defined reference data with uclust
    generateUserDataByClustering(path_to_reference_data = './Tax4Fun2_ReferenceData_v2', path_to_user_data = 'MoreProkaryoticGenomes',
                                 name_of_user_data = 'User_Ref2', SSU_file_extension = '_16SrRNA.ffn', KEGG_file_extension = '_funPro.txt', use_force = TRUE)
    #推荐选择generateUserDataByClustering,该命令包含一个uclust聚类步骤,可消除数据中的冗余
    
    4.以非聚类方式进行功能预测
    ####从上述3.2生成参考数据开始,以非聚类方式####
    generateUserData(path_to_reference_data = "Tax4Fun2_ReferenceData_v2", 
                     path_to_user_data = "KELP_UserData", #指定用户要自定义数据库的数据源文件位置,是运行第一步extractSSU和第二步assignFunction之后得到的,此处提供已经运行好的以节省运行时间
                     name_of_user_data = "KELP1", #为您的数据库提供一个名称
                     SSU_file_extension = ".ffn", #运行第一步extractSSU后得到
                     KEGG_file_extension = ".txt")#运行第二步assignFunction后得到
    
    ####物种注释####
    runRefBlast(path_to_otus = "KELP_otus.fasta", 
                path_to_reference_data = "Tax4Fun2_ReferenceData_v2", 
                path_to_temp_folder = "Kelp_Ref99NR_withUser1", 
                database_mode = "Ref99NR", 
                use_force = T, 
                num_threads = 6, 
                include_user_data = T, path_to_user_data = "KELP_UserData", name_of_user_data = "KELP1")
    
    ####预测群落功能####
    makeFunctionalPrediction(path_to_otu_table = "KELP_otu_table.txt", 
                             path_to_reference_data = "Tax4Fun2_ReferenceData_v2", 
                             path_to_temp_folder = "Kelp_Ref99NR_withUser1", 
                             database_mode = "Ref99NR", 
                             normalize_by_copy_number = T, 
                             min_identity_to_reference = 0.97, 
                             normalize_pathways = F, 
                             include_user_data = T, path_to_user_data = "KELP_UserData", name_of_user_data = "KELP1")
    
    5.以Vsearch聚类方式进行功能预测
    ####从上述3.3生成参考数据开始,以Vsearch聚类方式####
    generateUserDataByClustering(path_to_reference_data = "Tax4Fun2_ReferenceData_v2", 
                                 path_to_user_data = "KELP_UserData", 
                                 name_of_user_data = "KELP2", 
                                 SSU_file_extension = ".ffn", 
                                 KEGG_file_extension = ".txt", 
                                 similarity_threshold = 0.99)#使用uclust对提取的SSU序列进行聚类
    
    ####物种注释####
    runRefBlast(path_to_otus = "KELP_otus.fasta", 
                path_to_reference_data = "Tax4Fun2_ReferenceData_v2", 
                path_to_temp_folder = "Kelp_Ref99NR_withUser2", 
                database_mode = "Ref99NR", 
                use_force = T, 
                num_threads = 6, 
                include_user_data = T, path_to_user_data = "KELP_UserData", name_of_user_data = "KELP2")
    
    ####预测群落功能####
    makeFunctionalPrediction(path_to_otu_table = "KELP_otu_table.txt", 
                             path_to_reference_data = "Tax4Fun2_ReferenceData_v2", 
                             path_to_temp_folder = "Kelp_Ref99NR_withUser2", 
                             database_mode = "Ref99NR", 
                             normalize_by_copy_number = T, 
                             min_identity_to_reference = 0.97, 
                             normalize_pathways = F, 
                             include_user_data = T, path_to_user_data = "KELP_UserData", name_of_user_data = "KELP2")
    
    6.计算(多)功能冗余指数(实验性功能)

    计算KEGG功能的系统发育分布(高FRI->高冗余度,低FRI->低冗余度,可能会随着群落变化而丢失)

    ####物种注释####
    runRefBlast(path_to_otus = "Water_otus.fna", 
                path_to_reference_data = "Tax4Fun2_ReferenceData_v2", 
                path_to_temp_folder = "Water_Ref99NR", 
                database_mode = "Ref99NR", 
                use_force = T, 
                num_threads = 6)
    
    ####计算functional redundancy indices(FRI)####
    calculateFunctionalRedundancy(path_to_otu_table = "Water_otu_table.txt", 
                                  path_to_reference_data = "Tax4Fun2_ReferenceData_v2", 
                                  path_to_temp_folder = "Water_Ref99NR", 
                                  database_mode = "Ref99NR", 
                                  min_identity_to_reference = 0.97)
    
    #或者
    calculateFunctionalRedundancy(path_to_otu_table = "Water_otu_table.txt", 
                                  path_to_reference_data = "Tax4Fun2_ReferenceData_v2", 
                                  path_to_temp_folder = "Water_Ref99NR", 
                                  database_mode = "Ref99NR", 
                                  min_identity_to_reference = 0.97, 
                                  prevalence_cutoff = 1.0)#自定义prevalence_cutoff值,此截止值用于将功能配置文件转换为二元向量(功能x存在或者不存在)
    

    PS:感觉学到2就够日常使用了

    相关文章

      网友评论

        本文标题:Tax4Fun2 16s扩增子群落功能预测 使用小结

        本文链接:https://www.haomeiwen.com/subject/icexfrtx.html