1.概述
shark基于spark,兼容hive,对hive依赖太强,废弃 -> spark sql
spark sql脱离hive,支持原生rdd,操作dataframe
spark on hive:
hive只存储,spark sql计算
Dataframe
相当于sql查询结果集
分布式数据容器,DataFrame底层即RDD
含数据结构信息,支持嵌套类型
数据来源
内置: json jdbc mysql hive hdfs parquet(压缩比高于json)
额外: avro(压缩) csv hbase es
es与hbase整合(重要)
谓词下推
两表join先条件过滤列裁剪
2 hello spark sql
/**
* 不能读取嵌套格式的json,先拼成非嵌套格式
* 读取json格式rdd
*/
public class GDataframeTest {
public static void main(String[] args) {
SparkConf conf = new SparkConf();
conf.setMaster("local").setAppName("sqltest");
JavaSparkContext sc = new JavaSparkContext(conf);
SQLContext sqlContext = new SQLContext(sc);
DataFrame json = sqlContext.read().format("json").load("./json");
// 转rdd
JavaRDD<Row> javaRDD = json.javaRDD();
javaRDD.foreach(new VoidFunction<Row>() {
public void call(Row row) throws Exception {
// System.out.println(row);
// System.out.println(row.get(0));
// System.out.println(row.get(1));
System.out.println(row.getAs("name"));
}
});
// 另一种加载json的方式
// DataFrame json = sqlContext.read().json("./json");
// DataFrame中既有列的schema又有数据, 列按照ascii码排序
// 写sql查询会按指定的顺序显示列
// json.show();
// json.printSchema();
// select name, age from xxx where age > 18
// 此方式不常用
/* DataFrame df = json.select("name", "age").where(json.col("age").gt(18));
df.show();*/
// 显示行数
// df.show(100);
// 表相当于指针指向json源文件,底层操作spark job
json.registerTempTable("t1");
DataFrame sql = sqlContext.sql("select * from t1 where age > 18");
sql.show();
sc.stop();
}
}
3 创建dataframe
反射方式将普通RDD转为DataFrame
public class IRDDToDF {
public static void main(String[] args) {
SparkConf conf = new SparkConf();
conf.setMaster("local").setAppName("RDD");
JavaSparkContext sc = new JavaSparkContext(conf);
SQLContext sqlContext = new SQLContext(sc);
JavaRDD<String> lineRDD = sc.textFile("person.txt");
// Person需要实现序列化接口,访问级别需要是public
// 涉及到节点传输需要序列化
// 序列化版本号需要一致
// driver端变量executor端拿不到的情况(无法序列化): transient修饰(拒绝反序列化) 静态变量
final Person p = new Person();
JavaRDD<Person> personRDD = lineRDD.map(new Function<String, Person>() {
public Person call(String s) throws Exception {
// Person p = new Person();
p.setId(Integer.valueOf(s.split(",")[0]));
p.setName(s.split(",")[1]);
p.setAge(Integer.valueOf(s.split(",")[2]));
return p;
}
});
// 普通RDD转DataFrame,反射方式
DataFrame df = sqlContext.applySchema(personRDD, Person.class);
df.show();
df.printSchema();
df.registerTempTable("person");
DataFrame sql = sqlContext.sql("select id, name, age from person where id = 2");
// 按照ascii码顺序排序
sql.show();
JavaRDD<Row> javaRDD = df.javaRDD();
JavaRDD<Person> map = javaRDD.map(new Function<Row, Person>() {
public Person call(Row row) throws Exception {
Person p = new Person();
// 字段多时繁琐
p.setId(Integer.valueOf(row.get(1).toString()));
// p.setId(Integer.valueOf(row.getAs("id").toString()));
p.setName(row.get(2).toString());
p.setAge(Integer.valueOf((row.get(0).toString())));
return p;
}
});
map.foreach(new VoidFunction<Person>() {
public void call(Person person) throws Exception {
System.out.println(person.toString());
}
});
}
}
动态Schema创建DataFrame
public class JDynamicSchema {
public static void main(String[] args) {
SparkConf conf = new SparkConf();
conf.setMaster("local").setAppName("RDD");
JavaSparkContext sc = new JavaSparkContext(conf);
SQLContext sqlContext = new SQLContext(sc);
JavaRDD<String> lineRDD = sc.textFile("person.txt");
JavaRDD<Row> rowRDD = lineRDD.map(new Function<String, Row>() {
public Row call(String s) throws Exception {
return RowFactory.create(
s.split(",")[0],
s.split(",")[1],
Integer.valueOf(s.split(",")[2]));
}
});
List<StructField> asList = Arrays.asList(
DataTypes.createStructField("id", DataTypes.StringType, true),
DataTypes.createStructField("name", DataTypes.StringType, true),
DataTypes.createStructField("age", DataTypes.IntegerType, true)
);
StructType schema = DataTypes.createStructType(asList);
DataFrame df = sqlContext.createDataFrame(rowRDD, schema);
df.show();
}
}
读取Parquet文件创建DF
public class KParquest {
public static void main(String[] args) {
SparkConf conf = new SparkConf();
conf.setMaster("local").setAppName("parquet");
JavaSparkContext sc = new JavaSparkContext(conf);
SQLContext sqlContext = new SQLContext(sc);
JavaRDD<String> lineRDD = sc.textFile("json");
DataFrame df = sqlContext.read().json(lineRDD);
df.show();
// 创建parquet文件
// 覆盖
df.write().mode(SaveMode.Overwrite).format("parquet").save("parquet");
// df.write().mode(SaveMode.Ignore).parquet("parquest");
DataFrame load = sqlContext.read().format("parquet").load("parquet");
load.show();
sc.stop();
}
}
读取mysql数据生成DF
public class LDFFromMysql {
public static void main(String[] args) {
SparkConf conf = new SparkConf();
conf.setMaster("local").setAppName("mysql");
// 默认200分区,数据量大时可以调大
// 聚合join时会将操作分配到响应的分区
conf.set("spark.sql.shuffle.partitions", "1");
JavaSparkContext sc = new JavaSparkContext(conf);
SQLContext sqlContext = new SQLContext(sc);
Map<String, String> options = new HashMap<String, String>();
options.put("url", "jdbc:mysql://127.0.0.1:3306/spark");
options.put("driver", "com.mysql.jdbc.Driver");
options.put("user", "root");
options.put("password", "root");
options.put("dbtable", "person");
DataFrame person = sqlContext.read().format("jdbc").options(options).load();
person.show();
// 临时表指针指向数据库
person.registerTempTable("person");
// 第二种方式
DataFrameReader reader = sqlContext.read().format("jdbc");
reader.option("url", "jdbc:mysql://127.0.0.1:3306/spark");
reader.option("driver", "com.mysql.jdbc.Driver");
reader.option("user", "root");
reader.option("password", "root");
reader.option("dbtable", "score");
DataFrame score = reader.load();
score.show();
score.registerTempTable("score");
DataFrame result = sqlContext.sql("select person.age, score.score from person, score where person.id = score.id");
result.show();
// DF结果保存到mysql
Properties properties = new Properties();
properties.setProperty("user", "root");
properties.setProperty("password", "root");
result.write().mode(SaveMode.Overwrite).jdbc("jdbc:mysql://127.0.0.1:3306/spark", "result", properties);
System.out.println("finish");
sc.stop();
}
}
4 spark on hive
# hive配置文件copy到spark-shell节点(node-02)
scp hive-site.xml node-02:/opt/spark/conf
# hdfs相关配置
# /opt/spark/conf/spark-env.sh
-----------
export HADOOP_HOME=/opt/hadoop
export HADOOP_CONF_DIR=$HADOOP_HOME/etc/hadoop
-----------
# hive服务端节点(node-01)开启hive
hive --service metastore
# hive客户端节点(node-03)指定hive脚本
hive
# 执行hive脚本
select count(*) from jizhan
# node-02执行spark-shell
./spark-shell --master spark://node-01:7877,node-02:7877
# 导包
import org.apache.spark.sql.hive.HiveContext
# 创建hive上下文
val hiveContext = new HiveContext(sc)
# spark执行hive sql
hiveContext.sql("select count(*) from jizhan").show()
# 与node-03 hive脚本对比可见spark执行效率明显优于hive
提交spark on hive jar
/**
* 读取Hive中数据创建DF
*/
public class MDFFromHive {
public static void main(String[] args) {
SparkConf conf = new SparkConf();
conf.setAppName("hive");
JavaSparkContext sc = new JavaSparkContext(conf);
HiveContext hiveContext = new HiveContext(sc);
hiveContext.sql("USE spark");
hiveContext.sql("DROP TABLE IF EXISTS student_infos");
hiveContext.sql("CREATE TABLE IF NOT EXISTS student_infos (name STRING, age INT) row format delimited fields terminated by '\t'");
hiveContext.sql("load data local inpath '/root/test/student_infos' into table student_infos");
hiveContext.sql("drop table if exists student_scores");
hiveContext.sql("CREATE TABLE IF NOT EXISTS student_scores (name STRING, score INT) row format delimited fields terminated by '\t'");
hiveContext.sql("load data local inpath '/root/test/student_scores' into table student_scores");
DataFrame df = hiveContext.sql("select si.name, si.age, ss.score " +
"from student_infos si " +
"join student_scores ss " +
"on si.name = ss.name " +
"where ss.score >= 80");
df.registerTempTable("good_student");
DataFrame result = hiveContext.sql("select * from good_student");
result.show();
// 结果保存到hive
hiveContext.sql("drop table if exists result");
df.write().mode(SaveMode.Overwrite).saveAsTable("result");
DataFrame table = hiveContext.table("result");
Row[] rows = table.collect();
for(Row row : rows) {
System.out.println(row);
}
sc.stop();
}
}
导出jar文件(注意无需导出依赖的jar包),上传至node-02 /opt/spark/lib目录
# 执行spark jar
cd /opt/spark/bin
./spark-submit --master node-01:7877,node-02:7877 ../lib/test.jar
5 UDF | UDAF | 开窗函数
UDF - 用户自定义函数
public class NUDF {
public static void main(String[] args) {
SparkConf conf = new SparkConf();
conf.setMaster("local");
conf.setAppName("udf");
JavaSparkContext sc = new JavaSparkContext(conf);
SQLContext sqlContext = new SQLContext(sc);
// 根据list创建javaRDD
JavaRDD<String> parallelize = sc.parallelize(Arrays.asList("zhangsan","lisi","wangwu"));
// 根据javaRDD创建rowRDD
JavaRDD<Row> rowRDD = parallelize.map(new Function<String, Row>() {
private static final long serialVersionUID = 1L;
public Row call(String s) throws Exception {
return RowFactory.create(s);
}
});
/**
* 动态创建Schema方式加载DF
*/
List<StructField> fields = new ArrayList<StructField>();
fields.add(DataTypes.createStructField("name", DataTypes.StringType,true));
StructType schema = DataTypes.createStructType(fields);
DataFrame df = sqlContext.createDataFrame(rowRDD,schema);
df.registerTempTable("user");
/**
* 根据UDF函数参数的个数来决定是实现哪一个UDF UDF1,UDF2。。。。UDF1xxx
*/
sqlContext.udf().register("StrLen", new UDF1<String,Integer>() {
private static final long serialVersionUID = 1L;
public Integer call(String t1) throws Exception {
return t1.length();
}
}, DataTypes.IntegerType);
sqlContext.sql("select name ,StrLen(name) as length from user").show();
// sqlContext.udf().register("StrLen",new UDF2<String, Integer, Integer>() {
// private static final long serialVersionUID = 1L;
// @Override
// public Integer call(String t1, Integer t2) throws Exception {
// return t1.length()+t2;
// }
// } ,DataTypes.IntegerType );
// sqlContext.sql("select name ,StrLen(name,10) as length from user").show();
sc.stop();
}
}
UDAF - 用户自定义聚合函数
image.pngpublic class OUDAF {
public static void main(String[] args) {
SparkConf conf = new SparkConf();
conf.setMaster("local").setAppName("udaf");
JavaSparkContext sc = new JavaSparkContext(conf);
SQLContext sqlContext = new SQLContext(sc);
// 有可能分布在多个分区中
JavaRDD<String> parallelize = sc.parallelize(
Arrays.asList("zhangsan","lisi","wangwu","zhangsan","zhangsan","lisi"));
JavaRDD<Row> rowRDD = parallelize.map(new Function<String, Row>() {
private static final long serialVersionUID = 1L;
public Row call(String s) throws Exception {
return RowFactory.create(s);
}
});
List<StructField> fields = new ArrayList<StructField>();
fields.add(DataTypes.createStructField("name", DataTypes.StringType, true));
StructType schema = DataTypes.createStructType(fields);
// 动态schema创建dataframe
DataFrame df = sqlContext.createDataFrame(rowRDD, schema);
df.registerTempTable("user");
/**
* 注册一个UDAF函数,实现统计相同值得个数
* 注意:这里可以自定义一个类继承UserDefinedAggregateFunction类也是可以的
*/
sqlContext.udf().register("StringCount",new UserDefinedAggregateFunction() {
private static final long serialVersionUID = 1L;
/**
* 初始化一个内部的自己定义的值,在Aggregate之前每组数据的初始化结果
* 给每个分区的每个key做初始值(包括reduce端的每个key)
*/
@Override
public void initialize(MutableAggregationBuffer buffer) {
buffer.update(0, 0);
}
/**
* 更新 可以认为一个一个地将组内的字段值传递进来 实现拼接的逻辑
* buffer.getInt(0)获取的是上一次聚合后的值
* 相当于map端的combiner,combiner就是对每一个map task的处理结果进行一次小聚合
* 大聚和发生在reduce端.
* 这里即是:在进行聚合的时候,每当有新的值进来,对分组后的聚合如何进行计算
*/
@Override
public void update(MutableAggregationBuffer buffer, Row arg1) {
// row即每一条数据
// 计数,落地
buffer.update(0, buffer.getInt(0)+1);
}
/**
* 合并 update操作,可能是针对一个分组内的部分数据,在某个节点上发生的 但是可能一个分组内的数据,会分布在多个节点上处理
* 此时就要用merge操作,将各个节点上分布式拼接好的串,合并起来
* buffer1.getInt(0) : 大聚合的时候 上一次聚合后的值
* buffer2.getInt(0) : 这次计算传入进来的update的结果
* 这里即是:最后在分布式节点完成后需要进行全局级别的Merge操作
*/
@Override
public void merge(MutableAggregationBuffer buffer1, Row buffer2) {
// row即map端每个分区处理后的结果
// reduce端拉取不同节点数据聚合
buffer1.update(0, buffer1.getInt(0) + buffer2.getInt(0));
}
/**
* 在进行聚合操作的时候所要处理的数据的结果的类型
*/
@Override
public StructType bufferSchema() {
return DataTypes.createStructType(Arrays.asList(DataTypes.createStructField("bffer", DataTypes.IntegerType, true)));
}
/**
* 最后返回一个和dataType方法的类型要一致的类型,返回UDAF最后的计算结果
*/
@Override
public Object evaluate(Row row) {
return row.getInt(0);
}
/**
* 指定UDAF函数计算后返回的结果类型
*/
@Override
public DataType dataType() {
return DataTypes.IntegerType;
}
/**
* 指定输入字段的字段及类型
*/
@Override
public StructType inputSchema() {
return DataTypes.createStructType(Arrays.asList(DataTypes.createStructField("namexxx", DataTypes.StringType, true)));
}
/**
* 确保一致性 一般用true,用以标记针对给定的一组输入,UDAF是否总是生成相同的结果。
*/
@Override
public boolean deterministic() {
return true;
}
});
sqlContext.sql("select name ,StringCount(name) as strCount from user group by name").show();
sc.stop();
}
}
开窗函数
# 提交spark jar任务
./spark-submit --master spark://node-01:7877,node-02:7877 --class cn.dfun.demo.spark.PWindowFun ../lib/test.jar
/**
* 开窗函数
* 按照某字段分组,按照另一字段排序
* 开窗函数需要使用hiveContext执行
*/
public class PWindowFun {
public static void main(String[] args) {
SparkConf conf = new SparkConf();
conf.setAppName("windowfun");
conf.set("spark.sql.shuffle.partitions","1");
JavaSparkContext sc = new JavaSparkContext(conf);
HiveContext hiveContext = new HiveContext(sc);
hiveContext.sql("use spark");
hiveContext.sql("drop table if exists sales");
hiveContext.sql("create table if not exists sales (riqi string,leibie string,jine Int) "
+ "row format delimited fields terminated by '\t'");
hiveContext.sql("load data local inpath '/root/test/sales' into table sales");
DataFrame result = hiveContext.sql("select riqi,leibie,jine "
+ "from ("
+ "select riqi,leibie,jine,"
+ "row_number() over (partition by leibie order by jine desc) rank " // 按照类别分组,按照金额降序排列
+ "from sales) t "
+ "where t.rank<=3");
result.show(100);
/**
* 将结果保存到hive表sales_result
*/
result.write().mode(SaveMode.Overwrite).saveAsTable("sales_result");
sc.stop();
}
}
网友评论