Buffer状态
对于生产者这边,BufferQueue的流程基本讲完了。简单说来,首先提需求,告诉BufferQueue需要什么样的Buffer,大小,格式,usage等等;然后dequeue Buffer出来,往Buffer里面绘制显示数据;绘制完成后,queue到BufferQueue里面,并通知消费者进行消费。如此不断的的dequeue,绘制,queue。
消费者这边的流程,我们还没有讲到。对于消费者来说,收到通知后,将从BufferQueue里面取queue过来的Buffer进行合成,合成完的Buffer再释放掉,这里的释放,是概念上的,并没有真正释放内存,只是让其返回队列,可以被再次dequeue。消费者这边也是不断的接通知,取buffer合成,然后释放,不断循环。
此图是Android官网对BufferQueue通信过程的描述,这很好的描述这个过程。
BufferQueue数据流
在Android 6.0及之前的版本,在这些通信过程中,都将Buffer的状态标记为具体的状态。这四个过程Buffer分别对应不同的四个状态:
-
DEQUEUED 状态
Producer dequeue一个Buffer后,这个Buffer就变为DEQUEUED状态,release Fence发信号后,Producer就可以修改Buffer的内容,我们称为release Fence。此时Buffer被Producer占用。DEQUEUED状态的Buffer可以迁移到 QUEUED 状态,通过queueBuffer或attachBuffer流程。也可以迁移到FREE装,通过cancelBuffer或detachBuffer流程。 -
QUEUED 状态
Buffer绘制完后,queue到BufferQueue中,给Consumer进行消费。此时Buffer可能还没有真正绘制完成,必现要等对应的Fence发信号出来后,才真正完成。此时Buffer是BufferQueue持有,可以迁移到ACQUIRED状态,通过acquireBuffer流程。而已可以迁移到FREE状态,如果另外一个Buffer被异步的queue进来。 -
ACQUIRED 状态
Buffer已经被Consumer获取,但是也必须要等对应的Fence发信号才能被Consumer读写,找个Fence是从Producer那边,queueBuffer的时候传过来的。我们将其称为acquire fence。此时,Buffer被Consumer持有。状态可以迁移到FREE状态,通过releaseBuffer或detachBuffer流程。除了从acquireBuffer流程可以迁移到ACQUIRED状态,attachBuffer流程也可以迁移到ACQUIRED状态。 -
FREE 状态
FREE状态,说明Buffer被BufferQueue持有,可以被Producer dequeue,它将迁移到DEQUEUED状态,通过dequeueBuffer流程。 -
SHARED状态
SHARED状态是一个特殊的状态,SHARED的Buffer并不参与前面所说的状态迁移。它说明Buffer被用与共享Buffer模式。除了FREE状态,它可以是其他的任何状态。它可以被多次dequeued, queued, 或者 acquired。这中共享Buffer的模式,主要用于VR等低延迟要求的场合。
目前,Buffer的状态,都是通过各个状态的Buffer的量来表示状态,对应的关系如下:
Buffer状态 | mShared | mDequeueCount | mQueueCount | mAcquireCount |
---|---|---|---|---|
FREE | false | 0 | 0 | 0 |
DEQUEUED | false | 1 | 0 | 0 |
QUEUED | false | 0 | 1 | 0 |
ACQUIRED | false | 0 | 0 | 1 |
SHARED | true | any | any | any |
Buffer的状态在代码中用BufferState描述,BufferState的定义如下:
* frameworks/native/libs/gui/include/gui/BufferSlot.h
struct BufferState {
BufferState()
: mDequeueCount(0),
mQueueCount(0),
mAcquireCount(0),
mShared(false) {
}
uint32_t mDequeueCount;
uint32_t mQueueCount;
uint32_t mAcquireCount;
bool mShared;
... ...
};
前面讲解dequeueBuffer和queueBuffer流程时,BufferQueue有很多个队列,我们再来看一下BufferQueue中,几个队列间的关系。
BufferQueueCore中的定义如下:
* frameworks/native/libs/gui/include/gui/BufferQueueCore.h
class BufferQueueCore : public virtual RefBase {
... ...
typedef Vector<BufferItem> Fifo;
... ...
// mSlots is an array of buffer slots that must be mirrored on the producer
// side. This allows buffer ownership to be transferred between the producer
// and consumer without sending a GraphicBuffer over Binder. The entire
// array is initialized to NULL at construction time, and buffers are
// allocated for a slot when requestBuffer is called with that slot's index.
BufferQueueDefs::SlotsType mSlots;
// mQueue is a FIFO of queued buffers used in synchronous mode.
Fifo mQueue;
// mFreeSlots contains all of the slots which are FREE and do not currently
// have a buffer attached.
std::set<int> mFreeSlots;
// mFreeBuffers contains all of the slots which are FREE and currently have
// a buffer attached.
std::list<int> mFreeBuffers;
// mUnusedSlots contains all slots that are currently unused. They should be
// free and not have a buffer attached.
std::list<int> mUnusedSlots;
// mActiveBuffers contains all slots which have a non-FREE buffer attached.
std::set<int> mActiveBuffers;
-
mSlots
mSlots 是Buffer序号的一个数组,Producer端的mSlots也是这个mSlots,Consumer端是mSlots也是里的mSlots的引用。它可实现Buffer在Producer和Consumer之间转移,而不需要真正的在Binder间去传输一个GraphicBuffer。初始状态时为空,当requestBuffer流程执行时,将去为对应的Buffer序号,分配真正的Buffer。 -
mQueue
mQueue是一个先进先出的Vector,是同步模式下使用。里面就是处于QUEUED状态的Buffer。 -
mFreeSlots
mFreeSlots包含所有是FREE状态,且还没有分配Buffer的,Buffer序号集合。刚开始时,mFreeSlots被初始化为MaxBufferCount个Buffer序号集合,dequeueBuffer的时候,将先从这个集合中获取。但是消费者消费完成,释放的Buffer并不返回到这个队列中,而是返回到mFreeBuffers中。 -
mFreeBuffers
mFreeBuffers包含的是所有FREE状态,且已经分配Buffer的,Buffer序号的结合。消费者消费完成,释放的Buffer并不返回到这个队列中,而是返回到mFreeBuffers中。 -
mUnusedSlots
mUnusedSlots和mFreeSlots有些相似,只是mFreeSlots会被用到,而mUnusedSlots中的Buffer序号不会不用到。也就是,总的Buffer序号NUM_BUFFER_SLOTS中,除去MaxBufferCount个mFreeSlots,剩余的集合。 -
mActiveBuffers
mActiveBuffers包含所有非FREE状态的Buffer。也就是包含了DEQUEUED,QUEUED,ACQUIRED以及SHARED这几个状态的。
我们从数学的角度来看看他们之间的关系:
mSlots的数组大小为NUM_BUFFER_SLOTS,但是其中,真正用起来的也只有MaxBufferCount个,其他的都不会被用到。所以,我们可以这么理解,mSlots是BufferQueue中实际流转起来的Buffer。
mSlots = mFreeBuffers + mActiveBuffers
对于整体而言:
NUM_BUFFER_SLOTS = mUnusedSlots + mFreeSlots + mFreeBuffers + mActiveBuffers
mSlots是BufferSlot的集合,BufferSlot定义如下:
struct BufferSlot {
BufferSlot()
: mGraphicBuffer(nullptr),
mEglDisplay(EGL_NO_DISPLAY),
mBufferState(),
mRequestBufferCalled(false),
mFrameNumber(0),
mEglFence(EGL_NO_SYNC_KHR),
mFence(Fence::NO_FENCE),
mAcquireCalled(false),
mNeedsReallocation(false) {
}
// Buffer序号对应的Buffer
sp<GraphicBuffer> mGraphicBuffer;
// 创建EGLSyncKHR对象用
EGLDisplay mEglDisplay;
// Buffer序号当前的状态
BufferState mBufferState;
// mRequestBufferCalled 表示Producer确实已经调用requestBuffer
bool mRequestBufferCalled;
// mFrameNumber 表示该Buffer序号已经被queue的次数. 主要用于dequeueBuffer时,遵从LRU,这很有用,因为buffer 变FREE时,可能release Fence还没有发信号出来。
uint64_t mFrameNumber;
// 现在已经被mFence替换了,基本不用
EGLSyncKHR mEglFence;
// mFence 是同步的一种方式,上一个owner使用完Buffer后,需要发信号出来,下一个owner才可以使用。
sp<Fence> mFence;
// 表示Buffer已经被Consumer取走
bool mAcquireCalled;
// 表示Buffer需要重新分配,需要设置BUFFER_NEEDS_REALLOCATION 通知Producer,不要用原来的缓存的Buffer
bool mNeedsReallocation;
};
看完Buffer的状态后,再回头去看看前面介绍的dequeueBuffer和queueBuffer,是不是就很好理解了。
我们再来看看BufferQueue的工作模式,BufferQueue可以工作在几个模式:
- 同步模式 Synchronous-like mode
默认情况下,BufferQueue将工作在同步模式下。在该模式下,每个Buffer都从Producer进入,从Consumer退出,没有Buffer没有丢弃掉。如果Producer生产的太快,Consumer来不及消费,Producer将阻塞等待FREE的Buffer。前面的分析流程的时候在waitForFreeSlotThenRelock也说到了这点。
这是waitForFreeSlotThenRelock函数中的逻辑:
if (mDequeueTimeout >= 0) {
status_t result = mCore->mDequeueCondition.waitRelative(
mCore->mMutex, mDequeueTimeout);
if (result == TIMED_OUT) {
return result;
}
} else {
mCore->mDequeueCondition.wait(mCore->mMutex);
}
- 非同步模式 Non-blocking mode
和同步模式相反,BufferQueue工作在非阻塞模式下,在这种模式下,如果没有FREE Buffer,将生成一个错误,而不是阻塞等待FREE的Buffer。这种模式,也没有Buffer不丢弃。这中模式可以避免潜在的死锁,如果应用不理解Graphics框架中复杂的依赖条件。前面我们的代码分析中也看到这一点。waitForFreeSlotThenRelock
什么时候不去tryAgain
?
if (tryAgain) {
if ((mCore->mDequeueBufferCannotBlock || mCore->mAsyncMode) &&
(acquiredCount <= mCore->mMaxAcquiredBufferCount)) {
return WOULD_BLOCK;
}
mAsyncMode是通过BufferQueueProducer的setAsyncMode函数设置的,从Producer调用过来,受Producer控制。
mDequeueBufferCannotBlock则是在Producer 连接到BufferQueue时,根据条件判断的,具体逻辑如下:
status_t BufferQueueProducer::connect(const sp<IProducerListener>& listener,
int api, bool producerControlledByApp, QueueBufferOutput *output) {
... ...
if (mDequeueTimeout < 0) {
mCore->mDequeueBufferCannotBlock =
mCore->mConsumerControlledByApp && producerControlledByApp;
}
mCore->mAllowAllocation = true;
VALIDATE_CONSISTENCY();
return status;
}
-
舍弃模式 Discard mode
BufferQueue可以配置为丢弃旧Buffer,而不是生成错误或进行等待。比如,如果用GL对纹理进行快速的绘制,那么旧的Buffer不要丢弃。 -
共享Buffer模式 shared buffer mode
共享Buffer模式,表示Buffer是Producer和Consumer共享。共享Buffer模式下,一直用的都是同一个Buffer。而Buffer的状态不能迁移为FREE状态。代码中可以留意mCore->mSharedBufferMode
和mCore->mSharedBufferSlot
。这个模式其实也包含在同步模式中,只是比较特殊,单独说一下。
现在,再回头去看看前面介绍的dequeueBuffer和queueBuffer,是不是就更好理解了。
acquireBuffer流程
Buffer queue到BufferQueue中后,将通知消费者去消费。消费时,通过acquireBuffer来获取Buffer,我们且不管acquireBuffer是什么地方调的,我们先来看BufferQueue中acquireBuffer的处理流程。
* frameworks/native/libs/gui/BufferQueueConsumer.cpp
status_t BufferQueueConsumer::acquireBuffer(BufferItem* outBuffer,
nsecs_t expectedPresent, uint64_t maxFrameNumber) {
ATRACE_CALL();
int numDroppedBuffers = 0;
sp<IProducerListener> listener;
{
Mutex::Autolock lock(mCore->mMutex);
int numAcquiredBuffers = 0;
for (int s : mCore->mActiveBuffers) {
if (mSlots[s].mBufferState.isAcquired()) {
++numAcquiredBuffers;
}
}
if (numAcquiredBuffers >= mCore->mMaxAcquiredBufferCount + 1) {
BQ_LOGE("acquireBuffer: max acquired buffer count reached: %d (max %d)",
numAcquiredBuffers, mCore->mMaxAcquiredBufferCount);
return INVALID_OPERATION;
}
bool sharedBufferAvailable = mCore->mSharedBufferMode &&
mCore->mAutoRefresh && mCore->mSharedBufferSlot !=
BufferQueueCore::INVALID_BUFFER_SLOT;
// In asynchronous mode the list is guaranteed to be one buffer deep,
// while in synchronous mode we use the oldest buffer.
if (mCore->mQueue.empty() && !sharedBufferAvailable) {
return NO_BUFFER_AVAILABLE;
}
- acquireBuffer时,也是受mCore->mMutex控制的。
- numAcquiredBuffers,已经acquired的Buffer。mMaxAcquiredBufferCount最大可以acquire的Buffer,可以溢出一个,以便Consumer能方便替换旧的Buffer,如果旧的Buffer还没有释放时。
- sharedBufferAvailable,共享Buffer模式下使用。在这个模式下,mAutoRefresh表示,Consumer永远可以acquire到一块Buffer,即使BufferQueue还没有处于可以acquire的状态。
- mQueue,如没有Buffer被queue过来,mQueue为空,那么Consumer这边就acquire不到新的Buffer,Consumer这边已经acquire的会被继续使用。
如果有Buffer或是共享Buffer模式,继续~
* frameworks/native/libs/gui/BufferQueueConsumer.cpp
BufferQueueCore::Fifo::iterator front(mCore->mQueue.begin());
if (expectedPresent != 0 && !mCore->mQueue.empty()) {
const int MAX_REASONABLE_NSEC = 1000000000ULL; // 1 second
while (mCore->mQueue.size() > 1 && !mCore->mQueue[0].mIsAutoTimestamp) {
const BufferItem& bufferItem(mCore->mQueue[1]);
// If dropping entry[0] would leave us with a buffer that the
// consumer is not yet ready for, don't drop it.
if (maxFrameNumber && bufferItem.mFrameNumber > maxFrameNumber) {
break;
}
if (desiredPresent < expectedPresent - MAX_REASONABLE_NSEC ||
desiredPresent > expectedPresent) {
// This buffer is set to display in the near future, or
// desiredPresent is garbage. Either way we don't want to drop
// the previous buffer just to get this on the screen sooner.
BQ_LOGV("acquireBuffer: nodrop desire=%" PRId64 " expect=%"
PRId64 " (%" PRId64 ") now=%" PRId64,
desiredPresent, expectedPresent,
desiredPresent - expectedPresent,
systemTime(CLOCK_MONOTONIC));
break;
}
BQ_LOGV("acquireBuffer: drop desire=%" PRId64 " expect=%" PRId64
" size=%zu",
desiredPresent, expectedPresent, mCore->mQueue.size());
if (!front->mIsStale) {
// Front buffer is still in mSlots, so mark the slot as free
mSlots[front->mSlot].mBufferState.freeQueued();
if (!mCore->mSharedBufferMode &&
mSlots[front->mSlot].mBufferState.isFree()) {
mSlots[front->mSlot].mBufferState.mShared = false;
}
// Don't put the shared buffer on the free list
if (!mSlots[front->mSlot].mBufferState.isShared()) {
mCore->mActiveBuffers.erase(front->mSlot);
mCore->mFreeBuffers.push_back(front->mSlot);
}
listener = mCore->mConnectedProducerListener;
++numDroppedBuffers;
}
mCore->mQueue.erase(front);
front = mCore->mQueue.begin();
}
bool bufferIsDue = desiredPresent <= expectedPresent ||
desiredPresent > expectedPresent + MAX_REASONABLE_NSEC;
bool consumerIsReady = maxFrameNumber > 0 ?
front->mFrameNumber <= maxFrameNumber : true;
if (!bufferIsDue || !consumerIsReady) {
return PRESENT_LATER;
}
}
这里主要做了一些几件事:
- expectedPresent 期望被显示的时间
也就是这个Buffer希望在什么时候被显示到屏幕上。如果Buffer的DesiredPresent的时间早于这个时间,那么这个Buffer将被准时显示。或者稍晚才被显示,如果我们不想显示直到expectedPresent时间之后,我们返回PRESENT_LATER,不去acquire它。但是如果时间在一秒之内,就不会延迟了,直接acquire回去。 - 检查是否需要丢弃一些帧
如果是Surface自动生成的时间,就不去检查是否需要丢弃掉一些帧,这些Surface对显示时间是没有严格的要求的。如果mQueue中有多个Buffer,我们将丢掉一些queue过来比较早的Buffer。如果最近queue的Buffer,离期望显示的时间已经没有一秒了,那之前queue过来的Buffer都将被丢弃掉。这很好理解,你好比你要买一款手机,新款的广告虽然来了,但是还有一段时间才能上市,你等不了这么就久,就先买就旧款了,总得用手机吧。但是,如果新款不到一秒就上市了,我们就稍微等会儿直接买新款,不买旧款了。
front->mIsStale,表示Buffer已经被释放了,这是在BufferQueueCore::freeAllBuffersLocked
时置的位。此时,我们需要将Buffer都返回到BufferQueue FREE状态中。
该丢弃的丢弃了,余下的就可以用来去显示了。
* frameworks/native/libs/gui/BufferQueueConsumer.cpp
int slot = BufferQueueCore::INVALID_BUFFER_SLOT;
if (sharedBufferAvailable && mCore->mQueue.empty()) {
// make sure the buffer has finished allocating before acquiring it
mCore->waitWhileAllocatingLocked();
slot = mCore->mSharedBufferSlot;
// Recreate the BufferItem for the shared buffer from the data that
// was cached when it was last queued.
outBuffer->mGraphicBuffer = mSlots[slot].mGraphicBuffer;
outBuffer->mFence = Fence::NO_FENCE;
outBuffer->mFenceTime = FenceTime::NO_FENCE;
outBuffer->mCrop = mCore->mSharedBufferCache.crop;
outBuffer->mTransform = mCore->mSharedBufferCache.transform &
~static_cast<uint32_t>(
NATIVE_WINDOW_TRANSFORM_INVERSE_DISPLAY);
outBuffer->mScalingMode = mCore->mSharedBufferCache.scalingMode;
outBuffer->mDataSpace = mCore->mSharedBufferCache.dataspace;
outBuffer->mFrameNumber = mCore->mFrameCounter;
outBuffer->mSlot = slot;
outBuffer->mAcquireCalled = mSlots[slot].mAcquireCalled;
outBuffer->mTransformToDisplayInverse =
(mCore->mSharedBufferCache.transform &
NATIVE_WINDOW_TRANSFORM_INVERSE_DISPLAY) != 0;
outBuffer->mSurfaceDamage = Region::INVALID_REGION;
outBuffer->mQueuedBuffer = false;
outBuffer->mIsStale = false;
outBuffer->mAutoRefresh = mCore->mSharedBufferMode &&
mCore->mAutoRefresh;
} else {
slot = front->mSlot;
*outBuffer = *front;
}
如果是共享Buffer模式,即使mQueue为空,也会把共享的Buffer返回去。其他情况下就返回,mQueue的第一个Buffer。
* frameworks/native/libs/gui/BufferQueueConsumer.cpp
ATRACE_BUFFER_INDEX(slot);
if (!outBuffer->mIsStale) {
mSlots[slot].mAcquireCalled = true;
if (mCore->mQueue.empty()) {
mSlots[slot].mBufferState.acquireNotInQueue();
} else {
mSlots[slot].mBufferState.acquire();
}
mSlots[slot].mFence = Fence::NO_FENCE;
}
if (outBuffer->mAcquireCalled) {
outBuffer->mGraphicBuffer = NULL;
}
mCore->mQueue.erase(front);
mCore->mDequeueCondition.broadcast();
ATRACE_INT(mCore->mConsumerName.string(),
static_cast<int32_t>(mCore->mQueue.size()));
mCore->mOccupancyTracker.registerOccupancyChange(mCore->mQueue.size());
VALIDATE_CONSISTENCY();
}
if (listener != NULL) {
for (int i = 0; i < numDroppedBuffers; ++i) {
listener->onBufferReleased();
}
}
return NO_ERROR;
}
acquire到Buffer后,修改mSlots中对应Buffer序号的mBufferState状态。acquire的Buffer,需要从mQueue中 删掉。留意这里的ATRACE_INT,这个在systrace分析时,非常有用。如果Buffer被丢弃了,可以通过Producer的监听者,去通知Producer Buffer已经被release掉了。
releaseBuffer流程分析
Consumer具体怎么消费的,我们暂时不管,我们先来看消费完成后,releaseBuffer的流程。
* frameworks/native/libs/gui/BufferQueueConsumer.cpp
status_t BufferQueueConsumer::releaseBuffer(int slot, uint64_t frameNumber,
const sp<Fence>& releaseFence, EGLDisplay eglDisplay,
EGLSyncKHR eglFence) {
ATRACE_CALL();
ATRACE_BUFFER_INDEX(slot);
if (slot < 0 || slot >= BufferQueueDefs::NUM_BUFFER_SLOTS ||
releaseFence == NULL) {
BQ_LOGE("releaseBuffer: slot %d out of range or fence %p NULL", slot,
releaseFence.get());
return BAD_VALUE;
}
sp<IProducerListener> listener;
{ // Autolock scope
Mutex::Autolock lock(mCore->mMutex);
// FrameNumber已经变,buffer已经被重新分配
if (frameNumber != mSlots[slot].mFrameNumber &&
!mSlots[slot].mBufferState.isShared()) {
return STALE_BUFFER_SLOT;
}
if (!mSlots[slot].mBufferState.isAcquired()) {
BQ_LOGE("releaseBuffer: attempted to release buffer slot %d "
"but its state was %s", slot,
mSlots[slot].mBufferState.string());
return BAD_VALUE;
}
mSlots[slot].mEglDisplay = eglDisplay;
mSlots[slot].mEglFence = eglFence;
mSlots[slot].mFence = releaseFence;
mSlots[slot].mBufferState.release();
if (!mCore->mSharedBufferMode && mSlots[slot].mBufferState.isFree()) {
mSlots[slot].mBufferState.mShared = false;
}
// Don't put the shared buffer on the free list.
if (!mSlots[slot].mBufferState.isShared()) {
mCore->mActiveBuffers.erase(slot);
mCore->mFreeBuffers.push_back(slot);
}
listener = mCore->mConnectedProducerListener;
BQ_LOGV("releaseBuffer: releasing slot %d", slot);
mCore->mDequeueCondition.broadcast();
VALIDATE_CONSISTENCY();
} // Autolock scope
// Call back without lock held
if (listener != NULL) {
listener->onBufferReleased();
}
return NO_ERROR;
}
- release Buffer的流程相对简单,slot就是需要释放的Buffer的序号。
- Buffer的FrameNumber变了,可能Buffer已经重新分配,这个是不用管。
- 只能释放acquire状态的buffer序号,释放后是Buffer放会mFreeBuffers中。
- releaseFence,从Consumer那边传过来,Producer可以Dequeue mFreeBuffers中的Buffer,但是只有releaseFence发信号出来后,Consumer才真正用完,Producer才可以写。
- 同样的,可以通过listener通知Producer。
就这么多~~
小结
本章主要通过测试应用,讲解ANativeWindow,Surface间的关系,Surface和Producer,Consumer间的关系;P应用怎么使用BufferQueue。讲解了BufferQueue相关的几个流程,dequeueBuffer,queueBuffer,acquireBuffer,releaseBuffer;以及Buffer的状态,DEQUEUED,QUEUED,ACQUIRED,FREE迁移。
网友评论