美文网首页我爱编程
CS231n学习笔记-Python&Numpy学习

CS231n学习笔记-Python&Numpy学习

作者: MLjoy_HDU | 来源:发表于2017-01-01 20:45 被阅读0次

    NumpyPython下一个非常强大的库。在这篇笔记里我将会把CS231n课程用到的一些PythonNumpy的用法用通俗易懂的语言和例子记录下来,方便自己复习也方便他人学习。这里附上Numpy官方链接

    1.enumerate:不是单纯的打印内容,枚举的时候还会加上index

    >>> classes = ['plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck']
    >>> for y, cls in enumerate(classes):
    ...    print y, cls
    
    0 plane
    1 car
    2 bird
    3 cat
    4 deer
    5 dog
    6 frog
    7 horse
    8 ship
    9 truck
    

    2.np.flatnonzero():打印非零元素的下标,具体如下

    >>> x = np.arange(-2, 3)
    >>> x
    array([-2, -1,  0,  1,  2])
    >>> np.flatnonzero(x)
    array([0, 1, 3, 4])
    

    3.numpy.random.randint(low, high=None, size=None, dtype='l'):打印[low,high)之间的整数;如果high没有定义,那么就从[0,low)

    >>> np.random.randint(2, size=10)
    array([1, 0, 0, 0, 1, 1, 0, 0, 1, 0])
    
    >>> np.random.randint(1, size=10)
    array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0])
    
    #If high is None (the default), then results are from [0, low).
    #如果high没有定义,那么就默认从[0,low)
    
    >>> np.random.randint(5, size=(2, 4))
    array([[4, 0, 2, 1],
           [3, 2, 2, 0]])
    

    4.numpy.random.choice(a, size=None, replace=True, p=None)

    参数说明
    a : 1-D array-like or int
    If an ndarray, a random sample is generated from its elements.
    If an int, the random sample is generated as if a was np.arange(n)
    如果a是矩阵,那么结果就是从矩阵a中随机挑size个数出来重新生成array
    如果a是一个数,那就从np.arange(a)中随机挑size个数出来重新生成array

    size : int or tuple of ints, optional

    replace : boolean, optional
    Whether the sample is with or without replacement

    p : 1-D array-like, optional
    The probabilities associated with each entry in a. If not given the sample assumes a uniform distribution over all entries in a.

    >>> np.random.choice(5, 3)
    array([0, 3, 4])
    #a : If an ndarray, a random sample is generated from its elements. 
    #If an int, the random sample is generated as if a was np.arange(n)
    #This is equivalent to np.random.randint(0,5,3)
    #从arange(5)里面挑选3个出来
    

    这个参数里面有个replacement看不明白,差了半天,终于在StackOverflow上面找到了答案。A&Q如下

    Q:What does replacement mean in numpy.random.choice?

    A:It controls whether the sample is returned to the sample pool. If you want only unique samples then this should be false.

    大致意思就是如果想要生成的是不重复的,请设置replace = False


    5.numpy.reshape(a, newshape, order='C'):当newshape里面出现了-1

    >>> a = np.array([[1,2,3], [4,5,6]])
    >>> np.reshape(a, (3,-1))       # the unspecified value is inferred to be 2
    array([[1, 2],
           [3, 4],
           [5, 6]])
    
    

    讲下新用法,给出一个mn的矩阵,如果newshape给的参数是(x, -1),那么函数会自动判别newshape为(x, mn/x),这里的x一定要能被mn整除!*


    6.numpy.sum(a,axis = )
    平日里一直以为axis = 1 是按照列相加的,以前一直记错了,其实是按照行相加的,然后重新生成一个数组。


    7.numpy.argsort():常见用法,遇到很多numpy输出的都是下标,这个也不例外!!!

    >>> a = numpy.array([1,2,0,5,3])
    >>> numpy.argsort(a)
    array([2, 0, 1, 4, 3], dtype=int64)
    >>> a[numpy.argsort(a)]
    array([0, 1, 2, 3, 5])
    

    np.argsort(a)的结果仅仅是下标!a[np.argsort(a)]的结果才是最终排好序的结果。


    8.U1 = np.random.rand(*H1.shape) < p

    乖乖,我孤陋寡闻了,以前都没见到过加*号的

    >>> np.random.rand(a.shape)
    Traceback (most recent call last):
    
      File "<ipython-input-10-596e2a7492cd>", line 1, in <module>
        np.random.rand(a.shape)
    
      File "mtrand.pyx", line 1623, in mtrand.RandomState.rand (numpy\random\mtrand\mtrand.c:17636)
    
      File "mtrand.pyx", line 1143, in mtrand.RandomState.random_sample (numpy\random\mtrand\mtrand.c:13908)
    
      File "mtrand.pyx", line 163, in mtrand.cont0_array (numpy\random\mtrand\mtrand.c:2055)
    
    TypeError: an integer is required
    
    >>> np.random.rand(*a.shape)
    array([ 0.10049452,  0.49159476,  0.3668072 ])
    

    经过这两步,就清清楚楚了。np.random.rand()括号里加的是个int型的数,而a.shape结果并不是一个int型的数,这时候就要在a.shape前面加个*号了。


    9.numpy.binicount(x, weight = None, minlength = None)

    >>> x = np.array([0, 1, 1, 3, 2, 1, 7])
    >>> np.bincount(x)
    array([1, 3, 1, 1, 0, 0, 0, 1])
    
    

    我们可以看到x中最大的数为7,因此结果的长度是7+1个
    索引0(数0)出现了1次,索引1(数1)出现了3次......索引5(数5)出现了0次......


    暂时写到这里,以后有用到其他numpy不常见的用法都会在这个笔记下面补充。

    相关文章

      网友评论

        本文标题:CS231n学习笔记-Python&Numpy学习

        本文链接:https://www.haomeiwen.com/subject/ijrivttx.html