美文网首页
二、Kafka基础实战:消费者和生产者实例

二、Kafka基础实战:消费者和生产者实例

作者: 开发者之路 | 来源:发表于2020-10-27 11:02 被阅读0次

    一、Kafka消费者编程模型

    1.分区消费模型

    image.png

    分区消费伪代码描述

    main()
       获取分区的size
       for index =0 to size
         create thread(or process) consumer(Index)
    
    
    第index个线程(进程)
    consumer(index)
        创建到kafka broker的连接: KafkaClient(host,port)
        指定消费参数构建consumer: SimpleConsumer(topic, partitions)
        设置消费offset : consumer.seek(offset,0)
        while  True
          消费指定topic第index个分区的数据
          处理
         记录当前消息offset
         提交当前offset(可选)
    
    

    2.组(Group)消费模型

    image

    按组(Group)消费伪代码描述

    main()
       设置需要创建的流数N
       for index =0 to N
         create thread  consumer(Index)
    
    第index个线程
    consumer(index)
        创建到kafka broker的连接: KafkaClient(host,port)
        指定消费参数构建consumer: SimpleConsumer(topic, partitions)
        设置从头消费还是从最新的消费(smallest或largest)
        while  True
            从指定topic的第index个流取数据
            处理
         (offset会自动提交到zookeeper,无需我们操作)
    

    Consumer分配算法

    image

    3.两种消费模型对比

    分区消费模型更加灵活但是:
    (1)需要自己处理各种异常情况;
    (2)需要自己管理offset(以实现消息传递的其他语义);
    分组消费模型更加简单,但是不灵活:
    (1)不需要自己处理异常情况,不需要自己管理offset;
    (2)只能实现kafka默认的最少一次消息传递语义;

    消息传递三种语义:
    (1)至多一次;
    (2)最少一次;
    (3)恰好一次;

    二、Kafka消费者的Python和Java客户端实现

    1.Python客户端实例讲解

    • 需要的软件环境:
      已搭建好的kafka集群、Linux服务器一台、Python2.7.6 、 kafka-Python软件包

    • 分区消费模型的Python实现;

    main.py

    # -*- coding: utf-8 -*-
    """
    This module provide kafka partition and group consumer demo example.
    
    """
    
    
    import logging, time
    import partition_consumer
    
    
    def main():
    
    threads = []
    partition = 3
    for index in range(partition):
    threads.append(partition_consumer.Consumer(index))
    
    for t in threads:
    t.start()
    
    time.sleep(50000)
    
    if __name__ == '__main__':
    #logging.basicConfig(
    # format='%(asctime)s.%(msecs)s:%(name)s:%(thread)d:%(levelname)s:%(process)d:%(message)s',
    # level=logging.INFO
    # )
    main()
    

    partition_consumer.py

    # -*- coding: utf-8 -*-
    """
    This module provide kafka partition partition consumer demo example.
    
    
    """
    
    import threading
    from kafka.client import KafkaClient
    from kafka.consumer import SimpleConsumer
    
    class Consumer(threading.Thread):
        daemon = True
        def __init__(self,partition_index):
            threading.Thread.__init__(self)
            self.part = [partition_index]
            self.__offset = 0
    
    
        def run(self):
            client = KafkaClient("10.206.216.13:19092,10.206.212.14:19092,10.206.209.25:19092")
            consumer = SimpleConsumer(client, "test-group", "jiketest",auto_commit=False,partitions=self.part)
    
            consumer.seek(0,0)
    
            while True:
                message = consumer.get_message(True,60)
                self.__offset = message.offset
                print message.message.value
    

    •组(Group)消费模型的Python实现;

    main.py

    # -*- coding: utf-8 -*-
    """
    This module provide kafka partition and group consumer demo example.
    
    
    """
    
    import logging, time
    import group_consumer
    
    
    def main():
    
        conusmer_thread = group_consumer.Consumer()
        conusmer_thread.start()
    
        time.sleep(500000)
    
    if __name__ == '__main__':
        #logging.basicConfig(
        #    format='%(asctime)s.%(msecs)s:%(name)s:%(thread)d:%(levelname)s:%(process)d:%(message)s',
        #    level=logging.INFO
        #    )
        main()
    

    group_consumer.py

    # -*- coding: utf-8 -*-
    """
    This module provide kafka partition group consumer demo example.
    
    """
    
    import threading
    from kafka.client import KafkaClient
    from kafka.consumer import SimpleConsumer
    
    class Consumer(threading.Thread):
        daemon = True
    
        def run(self):
            client = KafkaClient("10.206.216.13:19092,10.206.212.14:19092,10.206.209.25:19092")
            consumer = SimpleConsumer(client, "test-group", "jiketest")
    
            for message in consumer:
                print(message.message.value)
    

    2.Python客户端参数调优

    • fetch_size_bytes: 从服务器获取单包大小;
    • buffer_size: kafka客户端缓冲区大小;
    • Group:分组消费时分组名
    • auto_commit: offset是否自动提交;

    3.Java客户端实例讲解

    • 需要的软件环境:

    已搭建好的kafka集群、Linux服务器一台、Apache Maven 3.2.3、 kafka 0.8.1

    • 分区消费模型的Java实现;
    
    import kafka.api.FetchRequest;
    import kafka.api.FetchRequestBuilder;
    import kafka.api.PartitionOffsetRequestInfo;
    import kafka.common.ErrorMapping;
    import kafka.common.TopicAndPartition;
    import kafka.javaapi.*;
    import kafka.javaapi.consumer.SimpleConsumer;
    import kafka.message.MessageAndOffset;
     
    import java.nio.ByteBuffer;
    import java.util.ArrayList;
    import java.util.Collections;
    import java.util.HashMap;
    import java.util.List;
    import java.util.Map;
    
    public class PartitionConsumerTest {
        public static void main(String args[]) {
            PartitionConsumerTest example = new PartitionConsumerTest();
            long maxReads = Long.MAX_VALUE;
            String topic = "jiketest";
            if(args.length < 1){
                System.out.println("Please assign partition number.");
            }
            
            List<String> seeds = new ArrayList<String>();
            String hosts="10.206.216.13,10.206.212.14,10.206.209.25";
            String[] hostArr = hosts.split(",");
            for(int index = 0;index < hostArr.length;index++){
                seeds.add(hostArr[index].trim());
            }
            
            int port = 19092;
             
            int partLen = Integer.parseInt(args[0]);
            for(int index=0;index < partLen;index++){
                try {
                    example.run(maxReads, topic, index/*partition*/, seeds, port);
                } catch (Exception e) {
                    System.out.println("Oops:" + e);
                     e.printStackTrace();
                }
            }
        }
        
        private List<String> m_replicaBrokers = new ArrayList<String>();
         
            public PartitionConsumerTest() {
                m_replicaBrokers = new ArrayList<String>();
            }
         
            public void run(long a_maxReads, String a_topic, int a_partition, List<String> a_seedBrokers, int a_port) throws Exception {
                // find the meta data about the topic and partition we are interested in
                //
                PartitionMetadata metadata = findLeader(a_seedBrokers, a_port, a_topic, a_partition);
                if (metadata == null) {
                    System.out.println("Can't find metadata for Topic and Partition. Exiting");
                    return;
                }
                if (metadata.leader() == null) {
                    System.out.println("Can't find Leader for Topic and Partition. Exiting");
                    return;
                }
                String leadBroker = metadata.leader().host();
                String clientName = "Client_" + a_topic + "_" + a_partition;
         
                SimpleConsumer consumer = new SimpleConsumer(leadBroker, a_port, 100000, 64 * 1024, clientName);
                long readOffset = getLastOffset(consumer,a_topic, a_partition, kafka.api.OffsetRequest.EarliestTime(), clientName);
         
                int numErrors = 0;
                while (a_maxReads > 0) {
                    if (consumer == null) {
                        consumer = new SimpleConsumer(leadBroker, a_port, 100000, 64 * 1024, clientName);
                    }
                    FetchRequest req = new FetchRequestBuilder()
                            .clientId(clientName)
                            .addFetch(a_topic, a_partition, readOffset, 100000) // Note: this fetchSize of 100000 might need to be increased if large batches are written to Kafka
                            .build();
                    FetchResponse fetchResponse = consumer.fetch(req);
         
                    if (fetchResponse.hasError()) {
                        numErrors++;
                        // Something went wrong!
                        short code = fetchResponse.errorCode(a_topic, a_partition);
                        System.out.println("Error fetching data from the Broker:" + leadBroker + " Reason: " + code);
                        if (numErrors > 5) break;
                        if (code == ErrorMapping.OffsetOutOfRangeCode())  {
                            // We asked for an invalid offset. For simple case ask for the last element to reset
                            readOffset = getLastOffset(consumer,a_topic, a_partition, kafka.api.OffsetRequest.LatestTime(), clientName);
                            continue;
                        }
                        consumer.close();
                        consumer = null;
                        leadBroker = findNewLeader(leadBroker, a_topic, a_partition, a_port);
                        continue;
                    }
                    numErrors = 0;
         
                    long numRead = 0;
                    for (MessageAndOffset messageAndOffset : fetchResponse.messageSet(a_topic, a_partition)) {
                        long currentOffset = messageAndOffset.offset();
                        if (currentOffset < readOffset) {
                            System.out.println("Found an old offset: " + currentOffset + " Expecting: " + readOffset);
                            continue;
                        }
                        readOffset = messageAndOffset.nextOffset();
                        ByteBuffer payload = messageAndOffset.message().payload();
         
                        byte[] bytes = new byte[payload.limit()];
                        payload.get(bytes);
                        System.out.println(String.valueOf(messageAndOffset.offset()) + ": " + new String(bytes, "UTF-8"));
                        numRead++;
                        a_maxReads--;
                    }
         
                    if (numRead == 0) {
                        try {
                            Thread.sleep(1000);
                        } catch (InterruptedException ie) {
                        }
                    }
                }
                if (consumer != null) consumer.close();
            }
         
            public static long getLastOffset(SimpleConsumer consumer, String topic, int partition,
                                             long whichTime, String clientName) {
                TopicAndPartition topicAndPartition = new TopicAndPartition(topic, partition);
                Map<TopicAndPartition, PartitionOffsetRequestInfo> requestInfo = new HashMap<TopicAndPartition, PartitionOffsetRequestInfo>();
                requestInfo.put(topicAndPartition, new PartitionOffsetRequestInfo(whichTime, 1));
                kafka.javaapi.OffsetRequest request = new kafka.javaapi.OffsetRequest(
                        requestInfo, kafka.api.OffsetRequest.CurrentVersion(), clientName);
                OffsetResponse response = consumer.getOffsetsBefore(request);
         
                if (response.hasError()) {
                    System.out.println("Error fetching data Offset Data the Broker. Reason: " + response.errorCode(topic, partition) );
                    return 0;
                }
                long[] offsets = response.offsets(topic, partition);
                return offsets[0];
            }
         
            private String findNewLeader(String a_oldLeader, String a_topic, int a_partition, int a_port) throws Exception {
                for (int i = 0; i < 3; i++) {
                    boolean goToSleep = false;
                    PartitionMetadata metadata = findLeader(m_replicaBrokers, a_port, a_topic, a_partition);
                    if (metadata == null) {
                        goToSleep = true;
                    } else if (metadata.leader() == null) {
                        goToSleep = true;
                    } else if (a_oldLeader.equalsIgnoreCase(metadata.leader().host()) && i == 0) {
                        // first time through if the leader hasn't changed give ZooKeeper a second to recover
                        // second time, assume the broker did recover before failover, or it was a non-Broker issue
                        //
                        goToSleep = true;
                    } else {
                        return metadata.leader().host();
                    }
                    if (goToSleep) {
                        try {
                            Thread.sleep(1000);
                        } catch (InterruptedException ie) {
                        }
                    }
                }
                System.out.println("Unable to find new leader after Broker failure. Exiting");
                throw new Exception("Unable to find new leader after Broker failure. Exiting");
            }
         
            private PartitionMetadata findLeader(List<String> a_seedBrokers, int a_port, String a_topic, int a_partition) {
                PartitionMetadata returnMetaData = null;
                loop:
                for (String seed : a_seedBrokers) {
                    SimpleConsumer consumer = null;
                    try {
                        consumer = new SimpleConsumer(seed, a_port, 100000, 64 * 1024, "leaderLookup");
                        List<String> topics = Collections.singletonList(a_topic);
                        TopicMetadataRequest req = new TopicMetadataRequest(topics);
                        kafka.javaapi.TopicMetadataResponse resp = consumer.send(req);
         
                        List<TopicMetadata> metaData = resp.topicsMetadata();
                        for (TopicMetadata item : metaData) {
                            for (PartitionMetadata part : item.partitionsMetadata()) {
                                if (part.partitionId() == a_partition) {
                                    returnMetaData = part;
                                    break loop;
                                }
                            }
                        }
                    } catch (Exception e) {
                        System.out.println("Error communicating with Broker [" + seed + "] to find Leader for [" + a_topic
                                + ", " + a_partition + "] Reason: " + e);
                    } finally {
                        if (consumer != null) consumer.close();
                    }
                }
                if (returnMetaData != null) {
                    m_replicaBrokers.clear();
                    for (kafka.cluster.Broker replica : returnMetaData.replicas()) {
                        m_replicaBrokers.add(replica.host());
                    }
                }
                return returnMetaData;
            }
    }
    
    • 组(Group)消费模型的Java实现;
    package kafka.consumer.group;
    
    import kafka.consumer.ConsumerIterator;
    import kafka.consumer.KafkaStream;
     
    public class ConsumerTest implements Runnable {
        private KafkaStream m_stream;
        private int m_threadNumber;
     
        public ConsumerTest(KafkaStream a_stream, int a_threadNumber) {
            m_threadNumber = a_threadNumber;
            m_stream = a_stream;
        }
     
        public void run() {
            ConsumerIterator<byte[], byte[]> it = m_stream.iterator();
            while (it.hasNext()){
                System.out.println("Thread " + m_threadNumber + ": " + new String(it.next().message()));
                
            }
            System.out.println("Shutting down Thread: " + m_threadNumber);
        }
    }
    
    package kafka.consumer.group;
    
    import kafka.consumer.ConsumerConfig;
    import kafka.consumer.KafkaStream;
    import kafka.javaapi.consumer.ConsumerConnector;
     
    import java.util.HashMap;
    import java.util.List;
    import java.util.Map;
    import java.util.Properties;
    import java.util.concurrent.ExecutorService;
    import java.util.concurrent.Executors;
    import java.util.concurrent.TimeUnit;
    
    public class GroupConsumerTest extends Thread {
        private final ConsumerConnector consumer;
        private final String topic;
        private  ExecutorService executor;
        
        public GroupConsumerTest(String a_zookeeper, String a_groupId, String a_topic){
            consumer = kafka.consumer.Consumer.createJavaConsumerConnector(
                    createConsumerConfig(a_zookeeper, a_groupId));
            this.topic = a_topic;
        }
        
        public void shutdown() {
            if (consumer != null) consumer.shutdown();
            if (executor != null) executor.shutdown();
            try {
                if (!executor.awaitTermination(Long.MAX_VALUE, TimeUnit.MILLISECONDS)) {
                    System.out.println("Timed out waiting for consumer threads to shut down, exiting uncleanly");
                }
            } catch (InterruptedException e) {
                System.out.println("Interrupted during shutdown, exiting uncleanly");
            }
       }
     
        public void run(int a_numThreads) {
            Map<String, Integer> topicCountMap = new HashMap<String, Integer>();
            topicCountMap.put(topic, new Integer(a_numThreads));
            Map<String, List<KafkaStream<byte[], byte[]>>> consumerMap = consumer.createMessageStreams(topicCountMap);
            List<KafkaStream<byte[], byte[]>> streams = consumerMap.get(topic);
     
            // now launch all the threads
            //
            executor = Executors.newFixedThreadPool(a_numThreads);
     
            // now create an object to consume the messages
            //
            int threadNumber = 0;
            for (final KafkaStream stream : streams) {
                executor.submit(new ConsumerTest(stream, threadNumber));
                threadNumber++;
            }
        }
        private static ConsumerConfig createConsumerConfig(String a_zookeeper, String a_groupId) {
            Properties props = new Properties();
            props.put("zookeeper.connect", a_zookeeper);
            props.put("group.id", a_groupId);
            props.put("zookeeper.session.timeout.ms", "40000");
            props.put("zookeeper.sync.time.ms", "2000");
            props.put("auto.commit.interval.ms", "1000");
     
            return new ConsumerConfig(props);
        }
        
        public static void main(String[] args) {
            if(args.length < 1){
                System.out.println("Please assign partition number.");
            }
            
            String zooKeeper = "10.206.216.13:12181,10.206.212.14:12181,10.206.209.25:12181";
            String groupId = "jikegrouptest";
            String topic = "jiketest";
            int threads = Integer.parseInt(args[0]);
     
            GroupConsumerTest example = new GroupConsumerTest(zooKeeper, groupId, topic);
            example.run(threads);
     
            try {
                Thread.sleep(Long.MAX_VALUE);
            } catch (InterruptedException ie) {
     
            }
            example.shutdown();
        }
    }
    

    4.Java客户端参数调优

    • fetchSize: 从服务器获取单包大小;
    • bufferSize: kafka客户端缓冲区大小;
    • group.id: 分组消费时分组名

    三、Kafka生产者编程模型

    1.同步生产模型

    image

    2.异步生产模型

    image

    3.两种生产模型伪代码描述

    main()
      创建到kafka broker的连接:KafkaClient(host,port)
      选择或者自定义生产者负载均衡算法 partitioner
      设置生产者参数
      根据负载均衡算法和设置的生产者参数构造Producer对象
    
      while True
        getMessage:从上游获得一条消息
        按照kafka要求的消息格式构造kafka消息
         根据分区算法得到分区
        发送消息
        处理异常
    

    4.两种生产模型对比

    同步生产模型:
    (1)低消息丢失率;
    (2)高消息重复率(由于网络原因,回复确认未收到);
    (3)高延迟

    异步生产模型:
    (1)低延迟;
    (2)高发送性能;
    (3)高消息丢失率(无确认机制,发送端队列满)

    四、Kafka生产者的Python和Java客户端实现

    1.Python客户端实例讲解

    • 需要的软件环境:
      已搭建好的kafka集群、Linux服务器一台、Python2.7.6 、 kafka-Python软件包

    main.py

    # -*- coding: utf-8 -*-
    """
    This module provide kafka sync and async producer demo example.
    
    
    """
    
    import logging, time
    
    from async.ASyncProducer import ASyncProducer
    from sync.SyncProducer import SyncProducer
    
    
    def main():
        threads = [
            ASyncProducer(),
            SyncProducer()
        ]
    
        for t in threads:
            t.start()
    
        time.sleep(5000)
    
    if __name__ == "__main__":
        #logging.basicConfig(
        #    format='%(asctime)s.%(msecs)s:%(name)s:%(thread)d:%(levelname)s:%(process)d:%(message)s',
        #    level=logging.INFO
        #    )
        main()
    
    • 同步生产模型的Python实现

    SyncProducer.py

    # -*- coding: utf-8 -*-
    """
    This module provide kafka partition and group consumer demo example.
    
    """
    
    import threading, time
    
    from kafka.client import KafkaClient
    from kafka.producer import SimpleProducer
    from kafka.partitioner import HashedPartitioner
    
    class SyncProducer(threading.Thread):
        daemon = True
    
        def run(self):
            client = KafkaClient("10.206.216.13:19092,10.206.212.14:19092,10.206.209.25:1909")
            producer = SimpleProducer(client)
            #producer = KeyedProducer(client,partitioner=HashedPartitioner)
    
            while True:
                producer.send_messages('jiketest', "test")
                producer.send_messages('jiketest', "test")
    
                time.sleep(1)
    
    • 异步生产模型的Python实现

    ASyncProducer.py

    # -*- coding: utf-8 -*-
    """
    This module provide kafka partition and group consumer demo example.
    
    """
    
    import threading, time
    
    from kafka.client import KafkaClient
    from kafka.producer import SimpleProducer
    
    class ASyncProducer(threading.Thread):
        daemon = True
    
        def run(self):
            client = KafkaClient("10.206.216.13:19092,10.206.212.14:19092,10.206.209.25:19092")
            producer = SimpleProducer(client,async=True)
    
            while True:
                producer.send_messages('jiketest', "test")
                producer.send_messages('jiketest', "test")
    
                time.sleep(1)
    

    2.Python客户端参数调优

    • req_acks:发送失败重试次数;
    • ack_timeout: 未接到确认,认为发送失败的时间;
    • async : 是否异步发送;
    • batch_send_every_n: 异步发送时,累计最大消息数;
    • batch_send_every_t:异步发送时,累计最大时间;

    3.Java客户端实例讲解

    • 需要的软件环境:
      已搭建好的kafka集群、Linux服务器一台、Apache Maven 3.2.3、 kafka 0.8.1

    SimplePartitioner.java

    package kafka.producer.partiton;
    
    import kafka.producer.Partitioner;
    import kafka.utils.VerifiableProperties;
     
    public class SimplePartitioner implements Partitioner {
        public SimplePartitioner (VerifiableProperties props) {
     
        }
     
        public int partition(Object key, int a_numPartitions) {
            int partition = 0;
            String stringKey = (String) key;
            int offset = stringKey.lastIndexOf('.');
            if (offset > 0) {
               partition = Integer.parseInt( stringKey.substring(offset+1)) % a_numPartitions;
            }
           return partition;
      }
     
    }
    
    • 同步模型的Java实现
    package kafka.producer.sync;
    import java.util.*;
    
    import kafka.javaapi.producer.Producer;
    import kafka.producer.KeyedMessage;
    import kafka.producer.ProducerConfig;
    
    public class SyncProduce {
        public static void main(String[] args) {
            long events = Long.MAX_VALUE;
            Random rnd = new Random();
     
            Properties props = new Properties();
            props.put("metadata.broker.list", "10.206.216.13:19092,10.206.212.14:19092,10.206.209.25:19092");
            props.put("serializer.class", "kafka.serializer.StringEncoder");
            //kafka.serializer.DefaultEncoder
            props.put("partitioner.class", "kafka.producer.partiton.SimplePartitioner");
            //kafka.producer.DefaultPartitioner: based on the hash of the key
            props.put("request.required.acks", "1");
            //0;  绝不等确认  1:   leader的一个副本收到这条消息,并发回确认 -1:   leader的所有副本都收到这条消息,并发回确认
     
            ProducerConfig config = new ProducerConfig(props);
     
            Producer<String, String> producer = new Producer<String, String>(config);
     
            for (long nEvents = 0; nEvents < events; nEvents++) { 
                   long runtime = new Date().getTime();  
                   String ip = "192.168.2." + rnd.nextInt(255); 
                   String msg = runtime + ",www.example.com," + ip; 
                   //eventKey必须有(即使自己的分区算法不会用到这个key,也不能设为null或者""),否者自己的分区算法根本得不到调用
                   KeyedMessage<String, String> data = new KeyedMessage<String, String>("jiketest", ip, msg);
                                                                   //             eventTopic, eventKey, eventBody
                   producer.send(data);
                   try {
                       Thread.sleep(1000);
                   } catch (InterruptedException ie) {
                   }
            }
            producer.close();
        }
    }
    
    • 异步模型的Java实现

    ASyncProduce.java

    
    package kafka.producer.async;
    
    import java.util.*;
    
    import kafka.javaapi.producer.Producer;
    import kafka.producer.KeyedMessage;
    import kafka.producer.ProducerConfig;
    
    
    public class ASyncProduce {
        public static void main(String[] args) {
            long events = Long.MAX_VALUE;
            Random rnd = new Random();
     
            Properties props = new Properties();
            props.put("metadata.broker.list", "10.206.216.13:19092,10.206.212.14:19092,10.206.209.25:19092");
            props.put("serializer.class", "kafka.serializer.StringEncoder");
            //kafka.serializer.DefaultEncoder
            props.put("partitioner.class", "kafka.producer.partiton.SimplePartitioner");
            //kafka.producer.DefaultPartitioner: based on the hash of the key
            //props.put("request.required.acks", "1");
            props.put("producer.type", "async");
            //props.put("producer.type", "1");
            // 1: async 2: sync
     
            ProducerConfig config = new ProducerConfig(props);
     
            Producer<String, String> producer = new Producer<String, String>(config);
     
            for (long nEvents = 0; nEvents < events; nEvents++) { 
                   long runtime = new Date().getTime();  
                   String ip = "192.168.2." + rnd.nextInt(255); 
                   String msg = runtime + ",www.example.com," + ip; 
                   KeyedMessage<String, String> data = new KeyedMessage<String, String>("jiketest", ip, msg);
                   producer.send(data);
                   try {
                       Thread.sleep(1000);
                   } catch (InterruptedException ie) {
                   }
            }
            producer.close();
        }
    }
    

    4.Java客户端参数调优

    • message.send.max.retries: 发送失败重试次数;
    • retry.backoff.ms :未接到确认,认为发送失败的时间;
    • producer.type: 同步发送或者异步发送;
    • batch.num.messages: 异步发送时,累计最大消息数;
    • queue.buffering.max.ms:异步发送时,累计最大时间;

    相关文章

      网友评论

          本文标题:二、Kafka基础实战:消费者和生产者实例

          本文链接:https://www.haomeiwen.com/subject/ikxbmktx.html