一、Kafka消费者编程模型
1.分区消费模型
image.png分区消费伪代码描述
main()
获取分区的size
for index =0 to size
create thread(or process) consumer(Index)
第index个线程(进程)
consumer(index)
创建到kafka broker的连接: KafkaClient(host,port)
指定消费参数构建consumer: SimpleConsumer(topic, partitions)
设置消费offset : consumer.seek(offset,0)
while True
消费指定topic第index个分区的数据
处理
记录当前消息offset
提交当前offset(可选)
2.组(Group)消费模型
image按组(Group)消费伪代码描述
main()
设置需要创建的流数N
for index =0 to N
create thread consumer(Index)
第index个线程
consumer(index)
创建到kafka broker的连接: KafkaClient(host,port)
指定消费参数构建consumer: SimpleConsumer(topic, partitions)
设置从头消费还是从最新的消费(smallest或largest)
while True
从指定topic的第index个流取数据
处理
(offset会自动提交到zookeeper,无需我们操作)
Consumer分配算法
image3.两种消费模型对比
分区消费模型更加灵活但是:
(1)需要自己处理各种异常情况;
(2)需要自己管理offset(以实现消息传递的其他语义);
分组消费模型更加简单,但是不灵活:
(1)不需要自己处理异常情况,不需要自己管理offset;
(2)只能实现kafka默认的最少一次消息传递语义;
消息传递三种语义:
(1)至多一次;
(2)最少一次;
(3)恰好一次;
二、Kafka消费者的Python和Java客户端实现
1.Python客户端实例讲解
-
需要的软件环境:
已搭建好的kafka集群、Linux服务器一台、Python2.7.6 、 kafka-Python软件包 -
分区消费模型的Python实现;
main.py
# -*- coding: utf-8 -*-
"""
This module provide kafka partition and group consumer demo example.
"""
import logging, time
import partition_consumer
def main():
threads = []
partition = 3
for index in range(partition):
threads.append(partition_consumer.Consumer(index))
for t in threads:
t.start()
time.sleep(50000)
if __name__ == '__main__':
#logging.basicConfig(
# format='%(asctime)s.%(msecs)s:%(name)s:%(thread)d:%(levelname)s:%(process)d:%(message)s',
# level=logging.INFO
# )
main()
partition_consumer.py
# -*- coding: utf-8 -*-
"""
This module provide kafka partition partition consumer demo example.
"""
import threading
from kafka.client import KafkaClient
from kafka.consumer import SimpleConsumer
class Consumer(threading.Thread):
daemon = True
def __init__(self,partition_index):
threading.Thread.__init__(self)
self.part = [partition_index]
self.__offset = 0
def run(self):
client = KafkaClient("10.206.216.13:19092,10.206.212.14:19092,10.206.209.25:19092")
consumer = SimpleConsumer(client, "test-group", "jiketest",auto_commit=False,partitions=self.part)
consumer.seek(0,0)
while True:
message = consumer.get_message(True,60)
self.__offset = message.offset
print message.message.value
•组(Group)消费模型的Python实现;
main.py
# -*- coding: utf-8 -*-
"""
This module provide kafka partition and group consumer demo example.
"""
import logging, time
import group_consumer
def main():
conusmer_thread = group_consumer.Consumer()
conusmer_thread.start()
time.sleep(500000)
if __name__ == '__main__':
#logging.basicConfig(
# format='%(asctime)s.%(msecs)s:%(name)s:%(thread)d:%(levelname)s:%(process)d:%(message)s',
# level=logging.INFO
# )
main()
group_consumer.py
# -*- coding: utf-8 -*-
"""
This module provide kafka partition group consumer demo example.
"""
import threading
from kafka.client import KafkaClient
from kafka.consumer import SimpleConsumer
class Consumer(threading.Thread):
daemon = True
def run(self):
client = KafkaClient("10.206.216.13:19092,10.206.212.14:19092,10.206.209.25:19092")
consumer = SimpleConsumer(client, "test-group", "jiketest")
for message in consumer:
print(message.message.value)
2.Python客户端参数调优
- fetch_size_bytes: 从服务器获取单包大小;
- buffer_size: kafka客户端缓冲区大小;
- Group:分组消费时分组名
- auto_commit: offset是否自动提交;
3.Java客户端实例讲解
- 需要的软件环境:
已搭建好的kafka集群、Linux服务器一台、Apache Maven 3.2.3、 kafka 0.8.1
- 分区消费模型的Java实现;
import kafka.api.FetchRequest;
import kafka.api.FetchRequestBuilder;
import kafka.api.PartitionOffsetRequestInfo;
import kafka.common.ErrorMapping;
import kafka.common.TopicAndPartition;
import kafka.javaapi.*;
import kafka.javaapi.consumer.SimpleConsumer;
import kafka.message.MessageAndOffset;
import java.nio.ByteBuffer;
import java.util.ArrayList;
import java.util.Collections;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
public class PartitionConsumerTest {
public static void main(String args[]) {
PartitionConsumerTest example = new PartitionConsumerTest();
long maxReads = Long.MAX_VALUE;
String topic = "jiketest";
if(args.length < 1){
System.out.println("Please assign partition number.");
}
List<String> seeds = new ArrayList<String>();
String hosts="10.206.216.13,10.206.212.14,10.206.209.25";
String[] hostArr = hosts.split(",");
for(int index = 0;index < hostArr.length;index++){
seeds.add(hostArr[index].trim());
}
int port = 19092;
int partLen = Integer.parseInt(args[0]);
for(int index=0;index < partLen;index++){
try {
example.run(maxReads, topic, index/*partition*/, seeds, port);
} catch (Exception e) {
System.out.println("Oops:" + e);
e.printStackTrace();
}
}
}
private List<String> m_replicaBrokers = new ArrayList<String>();
public PartitionConsumerTest() {
m_replicaBrokers = new ArrayList<String>();
}
public void run(long a_maxReads, String a_topic, int a_partition, List<String> a_seedBrokers, int a_port) throws Exception {
// find the meta data about the topic and partition we are interested in
//
PartitionMetadata metadata = findLeader(a_seedBrokers, a_port, a_topic, a_partition);
if (metadata == null) {
System.out.println("Can't find metadata for Topic and Partition. Exiting");
return;
}
if (metadata.leader() == null) {
System.out.println("Can't find Leader for Topic and Partition. Exiting");
return;
}
String leadBroker = metadata.leader().host();
String clientName = "Client_" + a_topic + "_" + a_partition;
SimpleConsumer consumer = new SimpleConsumer(leadBroker, a_port, 100000, 64 * 1024, clientName);
long readOffset = getLastOffset(consumer,a_topic, a_partition, kafka.api.OffsetRequest.EarliestTime(), clientName);
int numErrors = 0;
while (a_maxReads > 0) {
if (consumer == null) {
consumer = new SimpleConsumer(leadBroker, a_port, 100000, 64 * 1024, clientName);
}
FetchRequest req = new FetchRequestBuilder()
.clientId(clientName)
.addFetch(a_topic, a_partition, readOffset, 100000) // Note: this fetchSize of 100000 might need to be increased if large batches are written to Kafka
.build();
FetchResponse fetchResponse = consumer.fetch(req);
if (fetchResponse.hasError()) {
numErrors++;
// Something went wrong!
short code = fetchResponse.errorCode(a_topic, a_partition);
System.out.println("Error fetching data from the Broker:" + leadBroker + " Reason: " + code);
if (numErrors > 5) break;
if (code == ErrorMapping.OffsetOutOfRangeCode()) {
// We asked for an invalid offset. For simple case ask for the last element to reset
readOffset = getLastOffset(consumer,a_topic, a_partition, kafka.api.OffsetRequest.LatestTime(), clientName);
continue;
}
consumer.close();
consumer = null;
leadBroker = findNewLeader(leadBroker, a_topic, a_partition, a_port);
continue;
}
numErrors = 0;
long numRead = 0;
for (MessageAndOffset messageAndOffset : fetchResponse.messageSet(a_topic, a_partition)) {
long currentOffset = messageAndOffset.offset();
if (currentOffset < readOffset) {
System.out.println("Found an old offset: " + currentOffset + " Expecting: " + readOffset);
continue;
}
readOffset = messageAndOffset.nextOffset();
ByteBuffer payload = messageAndOffset.message().payload();
byte[] bytes = new byte[payload.limit()];
payload.get(bytes);
System.out.println(String.valueOf(messageAndOffset.offset()) + ": " + new String(bytes, "UTF-8"));
numRead++;
a_maxReads--;
}
if (numRead == 0) {
try {
Thread.sleep(1000);
} catch (InterruptedException ie) {
}
}
}
if (consumer != null) consumer.close();
}
public static long getLastOffset(SimpleConsumer consumer, String topic, int partition,
long whichTime, String clientName) {
TopicAndPartition topicAndPartition = new TopicAndPartition(topic, partition);
Map<TopicAndPartition, PartitionOffsetRequestInfo> requestInfo = new HashMap<TopicAndPartition, PartitionOffsetRequestInfo>();
requestInfo.put(topicAndPartition, new PartitionOffsetRequestInfo(whichTime, 1));
kafka.javaapi.OffsetRequest request = new kafka.javaapi.OffsetRequest(
requestInfo, kafka.api.OffsetRequest.CurrentVersion(), clientName);
OffsetResponse response = consumer.getOffsetsBefore(request);
if (response.hasError()) {
System.out.println("Error fetching data Offset Data the Broker. Reason: " + response.errorCode(topic, partition) );
return 0;
}
long[] offsets = response.offsets(topic, partition);
return offsets[0];
}
private String findNewLeader(String a_oldLeader, String a_topic, int a_partition, int a_port) throws Exception {
for (int i = 0; i < 3; i++) {
boolean goToSleep = false;
PartitionMetadata metadata = findLeader(m_replicaBrokers, a_port, a_topic, a_partition);
if (metadata == null) {
goToSleep = true;
} else if (metadata.leader() == null) {
goToSleep = true;
} else if (a_oldLeader.equalsIgnoreCase(metadata.leader().host()) && i == 0) {
// first time through if the leader hasn't changed give ZooKeeper a second to recover
// second time, assume the broker did recover before failover, or it was a non-Broker issue
//
goToSleep = true;
} else {
return metadata.leader().host();
}
if (goToSleep) {
try {
Thread.sleep(1000);
} catch (InterruptedException ie) {
}
}
}
System.out.println("Unable to find new leader after Broker failure. Exiting");
throw new Exception("Unable to find new leader after Broker failure. Exiting");
}
private PartitionMetadata findLeader(List<String> a_seedBrokers, int a_port, String a_topic, int a_partition) {
PartitionMetadata returnMetaData = null;
loop:
for (String seed : a_seedBrokers) {
SimpleConsumer consumer = null;
try {
consumer = new SimpleConsumer(seed, a_port, 100000, 64 * 1024, "leaderLookup");
List<String> topics = Collections.singletonList(a_topic);
TopicMetadataRequest req = new TopicMetadataRequest(topics);
kafka.javaapi.TopicMetadataResponse resp = consumer.send(req);
List<TopicMetadata> metaData = resp.topicsMetadata();
for (TopicMetadata item : metaData) {
for (PartitionMetadata part : item.partitionsMetadata()) {
if (part.partitionId() == a_partition) {
returnMetaData = part;
break loop;
}
}
}
} catch (Exception e) {
System.out.println("Error communicating with Broker [" + seed + "] to find Leader for [" + a_topic
+ ", " + a_partition + "] Reason: " + e);
} finally {
if (consumer != null) consumer.close();
}
}
if (returnMetaData != null) {
m_replicaBrokers.clear();
for (kafka.cluster.Broker replica : returnMetaData.replicas()) {
m_replicaBrokers.add(replica.host());
}
}
return returnMetaData;
}
}
- 组(Group)消费模型的Java实现;
package kafka.consumer.group;
import kafka.consumer.ConsumerIterator;
import kafka.consumer.KafkaStream;
public class ConsumerTest implements Runnable {
private KafkaStream m_stream;
private int m_threadNumber;
public ConsumerTest(KafkaStream a_stream, int a_threadNumber) {
m_threadNumber = a_threadNumber;
m_stream = a_stream;
}
public void run() {
ConsumerIterator<byte[], byte[]> it = m_stream.iterator();
while (it.hasNext()){
System.out.println("Thread " + m_threadNumber + ": " + new String(it.next().message()));
}
System.out.println("Shutting down Thread: " + m_threadNumber);
}
}
package kafka.consumer.group;
import kafka.consumer.ConsumerConfig;
import kafka.consumer.KafkaStream;
import kafka.javaapi.consumer.ConsumerConnector;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.Properties;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.TimeUnit;
public class GroupConsumerTest extends Thread {
private final ConsumerConnector consumer;
private final String topic;
private ExecutorService executor;
public GroupConsumerTest(String a_zookeeper, String a_groupId, String a_topic){
consumer = kafka.consumer.Consumer.createJavaConsumerConnector(
createConsumerConfig(a_zookeeper, a_groupId));
this.topic = a_topic;
}
public void shutdown() {
if (consumer != null) consumer.shutdown();
if (executor != null) executor.shutdown();
try {
if (!executor.awaitTermination(Long.MAX_VALUE, TimeUnit.MILLISECONDS)) {
System.out.println("Timed out waiting for consumer threads to shut down, exiting uncleanly");
}
} catch (InterruptedException e) {
System.out.println("Interrupted during shutdown, exiting uncleanly");
}
}
public void run(int a_numThreads) {
Map<String, Integer> topicCountMap = new HashMap<String, Integer>();
topicCountMap.put(topic, new Integer(a_numThreads));
Map<String, List<KafkaStream<byte[], byte[]>>> consumerMap = consumer.createMessageStreams(topicCountMap);
List<KafkaStream<byte[], byte[]>> streams = consumerMap.get(topic);
// now launch all the threads
//
executor = Executors.newFixedThreadPool(a_numThreads);
// now create an object to consume the messages
//
int threadNumber = 0;
for (final KafkaStream stream : streams) {
executor.submit(new ConsumerTest(stream, threadNumber));
threadNumber++;
}
}
private static ConsumerConfig createConsumerConfig(String a_zookeeper, String a_groupId) {
Properties props = new Properties();
props.put("zookeeper.connect", a_zookeeper);
props.put("group.id", a_groupId);
props.put("zookeeper.session.timeout.ms", "40000");
props.put("zookeeper.sync.time.ms", "2000");
props.put("auto.commit.interval.ms", "1000");
return new ConsumerConfig(props);
}
public static void main(String[] args) {
if(args.length < 1){
System.out.println("Please assign partition number.");
}
String zooKeeper = "10.206.216.13:12181,10.206.212.14:12181,10.206.209.25:12181";
String groupId = "jikegrouptest";
String topic = "jiketest";
int threads = Integer.parseInt(args[0]);
GroupConsumerTest example = new GroupConsumerTest(zooKeeper, groupId, topic);
example.run(threads);
try {
Thread.sleep(Long.MAX_VALUE);
} catch (InterruptedException ie) {
}
example.shutdown();
}
}
4.Java客户端参数调优
- fetchSize: 从服务器获取单包大小;
- bufferSize: kafka客户端缓冲区大小;
- group.id: 分组消费时分组名
三、Kafka生产者编程模型
1.同步生产模型
image2.异步生产模型
image3.两种生产模型伪代码描述
main()
创建到kafka broker的连接:KafkaClient(host,port)
选择或者自定义生产者负载均衡算法 partitioner
设置生产者参数
根据负载均衡算法和设置的生产者参数构造Producer对象
while True
getMessage:从上游获得一条消息
按照kafka要求的消息格式构造kafka消息
根据分区算法得到分区
发送消息
处理异常
4.两种生产模型对比
同步生产模型:
(1)低消息丢失率;
(2)高消息重复率(由于网络原因,回复确认未收到);
(3)高延迟
异步生产模型:
(1)低延迟;
(2)高发送性能;
(3)高消息丢失率(无确认机制,发送端队列满)
四、Kafka生产者的Python和Java客户端实现
1.Python客户端实例讲解
- 需要的软件环境:
已搭建好的kafka集群、Linux服务器一台、Python2.7.6 、 kafka-Python软件包
main.py
# -*- coding: utf-8 -*-
"""
This module provide kafka sync and async producer demo example.
"""
import logging, time
from async.ASyncProducer import ASyncProducer
from sync.SyncProducer import SyncProducer
def main():
threads = [
ASyncProducer(),
SyncProducer()
]
for t in threads:
t.start()
time.sleep(5000)
if __name__ == "__main__":
#logging.basicConfig(
# format='%(asctime)s.%(msecs)s:%(name)s:%(thread)d:%(levelname)s:%(process)d:%(message)s',
# level=logging.INFO
# )
main()
- 同步生产模型的Python实现
SyncProducer.py
# -*- coding: utf-8 -*-
"""
This module provide kafka partition and group consumer demo example.
"""
import threading, time
from kafka.client import KafkaClient
from kafka.producer import SimpleProducer
from kafka.partitioner import HashedPartitioner
class SyncProducer(threading.Thread):
daemon = True
def run(self):
client = KafkaClient("10.206.216.13:19092,10.206.212.14:19092,10.206.209.25:1909")
producer = SimpleProducer(client)
#producer = KeyedProducer(client,partitioner=HashedPartitioner)
while True:
producer.send_messages('jiketest', "test")
producer.send_messages('jiketest', "test")
time.sleep(1)
- 异步生产模型的Python实现
ASyncProducer.py
# -*- coding: utf-8 -*-
"""
This module provide kafka partition and group consumer demo example.
"""
import threading, time
from kafka.client import KafkaClient
from kafka.producer import SimpleProducer
class ASyncProducer(threading.Thread):
daemon = True
def run(self):
client = KafkaClient("10.206.216.13:19092,10.206.212.14:19092,10.206.209.25:19092")
producer = SimpleProducer(client,async=True)
while True:
producer.send_messages('jiketest', "test")
producer.send_messages('jiketest', "test")
time.sleep(1)
2.Python客户端参数调优
- req_acks:发送失败重试次数;
- ack_timeout: 未接到确认,认为发送失败的时间;
- async : 是否异步发送;
- batch_send_every_n: 异步发送时,累计最大消息数;
- batch_send_every_t:异步发送时,累计最大时间;
3.Java客户端实例讲解
- 需要的软件环境:
已搭建好的kafka集群、Linux服务器一台、Apache Maven 3.2.3、 kafka 0.8.1
SimplePartitioner.java
package kafka.producer.partiton;
import kafka.producer.Partitioner;
import kafka.utils.VerifiableProperties;
public class SimplePartitioner implements Partitioner {
public SimplePartitioner (VerifiableProperties props) {
}
public int partition(Object key, int a_numPartitions) {
int partition = 0;
String stringKey = (String) key;
int offset = stringKey.lastIndexOf('.');
if (offset > 0) {
partition = Integer.parseInt( stringKey.substring(offset+1)) % a_numPartitions;
}
return partition;
}
}
- 同步模型的Java实现
package kafka.producer.sync;
import java.util.*;
import kafka.javaapi.producer.Producer;
import kafka.producer.KeyedMessage;
import kafka.producer.ProducerConfig;
public class SyncProduce {
public static void main(String[] args) {
long events = Long.MAX_VALUE;
Random rnd = new Random();
Properties props = new Properties();
props.put("metadata.broker.list", "10.206.216.13:19092,10.206.212.14:19092,10.206.209.25:19092");
props.put("serializer.class", "kafka.serializer.StringEncoder");
//kafka.serializer.DefaultEncoder
props.put("partitioner.class", "kafka.producer.partiton.SimplePartitioner");
//kafka.producer.DefaultPartitioner: based on the hash of the key
props.put("request.required.acks", "1");
//0; 绝不等确认 1: leader的一个副本收到这条消息,并发回确认 -1: leader的所有副本都收到这条消息,并发回确认
ProducerConfig config = new ProducerConfig(props);
Producer<String, String> producer = new Producer<String, String>(config);
for (long nEvents = 0; nEvents < events; nEvents++) {
long runtime = new Date().getTime();
String ip = "192.168.2." + rnd.nextInt(255);
String msg = runtime + ",www.example.com," + ip;
//eventKey必须有(即使自己的分区算法不会用到这个key,也不能设为null或者""),否者自己的分区算法根本得不到调用
KeyedMessage<String, String> data = new KeyedMessage<String, String>("jiketest", ip, msg);
// eventTopic, eventKey, eventBody
producer.send(data);
try {
Thread.sleep(1000);
} catch (InterruptedException ie) {
}
}
producer.close();
}
}
- 异步模型的Java实现
ASyncProduce.java
package kafka.producer.async;
import java.util.*;
import kafka.javaapi.producer.Producer;
import kafka.producer.KeyedMessage;
import kafka.producer.ProducerConfig;
public class ASyncProduce {
public static void main(String[] args) {
long events = Long.MAX_VALUE;
Random rnd = new Random();
Properties props = new Properties();
props.put("metadata.broker.list", "10.206.216.13:19092,10.206.212.14:19092,10.206.209.25:19092");
props.put("serializer.class", "kafka.serializer.StringEncoder");
//kafka.serializer.DefaultEncoder
props.put("partitioner.class", "kafka.producer.partiton.SimplePartitioner");
//kafka.producer.DefaultPartitioner: based on the hash of the key
//props.put("request.required.acks", "1");
props.put("producer.type", "async");
//props.put("producer.type", "1");
// 1: async 2: sync
ProducerConfig config = new ProducerConfig(props);
Producer<String, String> producer = new Producer<String, String>(config);
for (long nEvents = 0; nEvents < events; nEvents++) {
long runtime = new Date().getTime();
String ip = "192.168.2." + rnd.nextInt(255);
String msg = runtime + ",www.example.com," + ip;
KeyedMessage<String, String> data = new KeyedMessage<String, String>("jiketest", ip, msg);
producer.send(data);
try {
Thread.sleep(1000);
} catch (InterruptedException ie) {
}
}
producer.close();
}
}
4.Java客户端参数调优
- message.send.max.retries: 发送失败重试次数;
- retry.backoff.ms :未接到确认,认为发送失败的时间;
- producer.type: 同步发送或者异步发送;
- batch.num.messages: 异步发送时,累计最大消息数;
- queue.buffering.max.ms:异步发送时,累计最大时间;
网友评论