美文网首页
【每日一题】48. Rotate Image

【每日一题】48. Rotate Image

作者: 七八音 | 来源:发表于2020-10-28 23:30 被阅读0次

    问题描述

    You are given an n x n 2D matrix representing an image, rotate the image by 90 degrees (clockwise).

    You have to rotate the image in-place, which means you have to modify the input 2D matrix directly. DO NOT allocate another 2D matrix and do the rotation.

    Example 1:

    img
    Input: matrix = [[1,2,3],[4,5,6],[7,8,9]]
    Output: [[7,4,1],[8,5,2],[9,6,3]]
    

    Example 2:

    img
    Input: matrix = [[5,1,9,11],[2,4,8,10],[13,3,6,7],[15,14,12,16]]
    Output: [[15,13,2,5],[14,3,4,1],[12,6,8,9],[16,7,10,11]]
    

    Example 3:

    Input: matrix = [[1]]
    Output: [[1]]
    

    Example 4:

    Input: matrix = [[1,2],[3,4]]
    Output: [[3,1],[4,2]]
    

    Constraints:

    • matrix.length == n
    • matrix[i].length == n
    • 1 <= n <= 20
    • -1000 <= matrix[i][j] <= 1000

    给定一个 n × n 的二维矩阵表示一个图像。

    将图像顺时针旋转 90 度。

    题解

    给定一个方阵,将方阵顺时针旋转90度;而且要求必须原地选择,直接对矩阵内容进行修改,不能使用别的矩阵进行辅助。

    通过观察,可以发现,顺时针矩阵旋转可以通过两步完成:

    1. 上下翻转
    2. 主对角线翻转。
    image-20201028092105741

    完整代码:

    class Solution {
    public:
        void rotate(vector<vector<int>>& matrix) {
            if (matrix.size() <= 0) return;
            updown(matrix);
            diagonal(matrix);
            
            return;
        }
        void updown(vector<vector<int>>& matrix){
            int size = matrix.size(), t = matrix.size() / 2;
            for (int i=0; i< t; ++i){
                for (int j=0; j< size; ++j){
                    swap(matrix[i][j], matrix[size-1-i][j]);
                }
            }
        }
        void diagonal(vector<vector<int>>& matrix){
            int size = matrix.size();
            for (int i=0; i< size; ++i){
                for (int j=i; j< size; ++j){
                    swap(matrix[i][j], matrix[j][i]);
                }
            }
        }
    };
    

    相关文章

      网友评论

          本文标题:【每日一题】48. Rotate Image

          本文链接:https://www.haomeiwen.com/subject/ilphvktx.html