TCP长连接与心跳保活

作者: 刀哥说Java | 来源:发表于2019-09-23 11:19 被阅读0次

可能很多 Java 程序员对 TCP 的理解只有一个三次握手,四次握手的认识,我觉得这样的原因主要在于 TCP 协议本身稍微有点抽象(相比较于应用层的 HTTP 协议)。

前言

可能很多 Java 程序员对 TCP 的理解只有一个三次握手,四次握手的认识,我觉得这样的原因主要在于 TCP 协议本身稍微有点抽象(相比较于应用层的 HTTP 协议);其次,非框架开发者不太需要接触到 TCP 的一些细节。其实我个人对 TCP 的很多细节也并没有完全理解,这篇文章主要针对微信交流群里有人提出的长连接,心跳的问题,做一个统一的整理。

image

在 Java 中,使用 TCP 通信,大概率会涉及到 Socket、Netty,本文会借用它们的一些 API 和设置参数来辅助介绍。

长连接与短连接

TCP 本身并没有长短连接的区别,长短与否,完全取决于我们怎么用它。

  • 短连接:每次通信时,创建 Socket;一次通信结束,调用 socket.close()。这就是一般意义上的短连接,短连接的好处是管理起来比较简单,存在的连接都是可用的连接,不需要额外的控制手段。
  • 长连接:每次通信完毕后,不会关闭连接,这样就可以做到连接的复用。长连接的好处便是省去了创建连接的耗时。

短连接和长连接的优势,分别是对方的劣势。想要图简单,不追求高性能,使用短连接合适,这样我们就不需要操心连接状态的管理;想要追求性能,使用长连接,我们就需要担心各种问题:比如端对端连接的维护,连接的保活。

长连接还常常被用来做数据的推送,我们大多数时候对通信的认知还是 request/response 模型,但 TCP 双工通信的性质决定了它还可以被用来做双向通信。在长连接之下,可以很方便的实现 push 模型。

短连接没有太多东西可以讲,所以下文我们将目光聚焦在长连接的一些问题上。纯讲理论未免有些过于单调,所以下文我借助 Dubbo 这个 RPC 框架的一些实践来展开 TCP 的相关讨论。

服务治理框架中的长连接

前面已经提到过,追求性能的时候,必然会选择使用长连接,所以借助 Dubbo 可以很好的来理解 TCP。我们开启两个 Dubbo 应用,一个 server 负责监听本地 20880(众所周知,这是 Dubbo 协议默认的端口),一个 client 负责循环发送请求。执行lsof -i:20880命令可以查看端口的相关使用情况:


image.png
  • *:20880 (LISTEN)说明了 Dubbo 正在监听本地的 20880 端口,处理发送到本地 20880 端口的请求
  • 后两条信息说明请求的发送情况,验证了 TCP 是一个双向的通信过程,由于我是在同一个机器开启了两个 Dubbo 应用,所以你能够看到是本地的 53078 端口与 20880 端口在通信。我们并没有手动设置 53078 这个客户端端口,他是随机的,但也阐释了一个道理:即使是发送请求的一方,也需要占用一个端口。
  • 稍微说一下 FD 这个参数,他代表了文件句柄,每新增一条连接都会占用新的文件句柄,如果你在使用 TCP 通信的过程中出现了open too many files的异常,那就应该检查一下,你是不是创建了太多的连接,而没有关闭。细心的读者也会联想到长连接的另一个好处,那就是会占用较少的文件句柄。

长连接的维护

因为客户端请求的服务可能分布在多个服务器上,客户端端自然需要跟对端创建多条长连接,使用长连接,我们遇到的第一个问题就是要如何维护长连接。

@Sharable 
 
public class NettyHandler extends SimpleChannelHandler { 
 
private final Map<String, Channel> channels = new ConcurrentHashMap<String, Channel>(); // <ip:port, channel> 
 
} 
 
public class NettyServer extends AbstractServer implements Server { 
 
private Map<String, Channel> channels; // <ip:port, channel> 
 
} 

在 Dubbo 中,客户端和服务端都使用ip:port维护了端对端的长连接,Channel 便是对连接的抽象。我们主要关注 NettyHandler 中的长连接,服务端同时维护一个长连接的集合是 Dubbo 的设计,我们将在后面提到。

连接的保活

这个话题就有的聊了,会牵扯到比较多的知识点。首先需要明确一点,为什么需要连接的报活?当双方已经建立了连接,但因为网络问题,链路不通,这样长连接就不能使用了。需要明确的一点是,通过 netstat,lsof 等指令查看到连接的状态处于ESTABLISHED状态并不是一件非常靠谱的事,因为连接可能已死,但没有被系统感知到,更不用提假死这种疑难杂症了。如果保证长连接可用是一件技术活。

连接的保活:KeepAlive

首先想到的是 TCP 中的 KeepAlive 机制。KeepAlive 并不是 TCP 协议的一部分,但是大多数操作系统都实现了这个机制。KeepAlive 机制开启后,在一定时间内(一般时间为 7200s,参数tcp_keepalive_time)在链路上没有数据传送的情况下,TCP 层将发送相应的KeepAlive探针以确定连接可用性,探测失败后重试 10(参数tcp_keepalive_probes)次,每次间隔时间 75s(参数tcp_keepalive_intvl),所有探测失败后,才认为当前连接已经不可用。

在 Netty 中开启 KeepAlive:

bootstrap.option(ChannelOption.SO_KEEPALIVE, true)

Linux 操作系统中设置 KeepAlive 相关参数,修改/etc/sysctl.conf文件:

net.ipv4.tcp_keepalive_time=90  
net.ipv4.tcp_keepalive_intvl=15  
net.ipv4.tcp_keepalive_probes=2 

KeepAlive 机制是在网络层面保证了连接的可用性,但站在应用框架层面我们认为这还不够。主要体现在两个方面:

  • KeepAlive 的开关是在应用层开启的,但是具体参数(如重试测试,重试间隔时间)的设置却是操作系统级别的,位于操作系统的/etc/sysctl.conf配置中,这对于应用来说不够灵活。
  • KeepAlive 的保活机制只在链路空闲的情况下才会起到作用,假如此时有数据发送,且物理链路已经不通,操作系统这边的链路状态还是 ESTABLISHED,这时会发生什么?自然会走 TCP 重传机制,要知道默认的 TCP 超时重传,指数退避算法也是一个相当长的过程。
  • KeepAlive 本身是面向网络的,并不是面向于应用的,当连接不可用时,可能是由于应用本身 GC 问题,系统 load 高等情况,但网络仍然是通的,此时,应用已经失去了活性,所以连接自然应该认为是不可用的。

看来,应用层面的连接保活还是必须要做的。

连接的保活:应用层心跳

终于点题了,文题中提到的心跳便是一个本文想要重点强调的另一个 TCP 相关的知识点。上一节我们已经解释过了,网络层面的 KeepAlive 不足以支撑应用级别的连接可用性,本节就来聊聊应用层的心跳机制是实现连接保活的。

如何理解应用层的心跳?简单来说,就是客户端会开启一个定时任务,定时对已经建立连接的对端应用发送请求(这里的请求是特殊的心跳请求),服务端则需要特殊处理该请求,返回响应。如果心跳持续多次没有收到响应,客户端会认为连接不可用,主动断开连接。不同的服务治理框架对心跳,建连,断连,拉黑的机制有不同的策略,但大多数的服务治理框架都会在应用层做心跳,Dubbo 也不例外。

应用层心跳的设计细节

以 Dubbo 为例,支持应用层的心跳,客户端和服务端都会开启一个HeartBeatTask,客户端在HeaderExchangeClient中开启,服务端将在HeaderExchangeServer开启。文章开头埋了一个坑:Dubbo 为什么在服务端同时维护Map呢?主要就是为了给心跳做贡献,心跳定时任务在发现连接不可用时,会根据当前是客户端还是服务端走不同的分支,客户端发现不可用,是重连;服务端发现不可用,是直接 close。

// HeartBeatTask 
 
if (channel instanceof Client) { 
 
((Client) channel).reconnect(); 
 
} else { 
 
channel.close(); 
 
} 

熟悉其他 RPC 框架的同学会发现,不同框架的心跳机制真的是差距非常大。心跳设计还跟连接创建,重连机制,黑名单连接相关,还需要具体框架具体分析。

除了定时任务的设计,还需要在协议层面支持心跳。最简单的例子可以参考 nginx 的健康检查,而针对 Dubbo 协议,自然也需要做心跳的支持,如果将心跳请求识别为正常流量,会造成服务端的压力问题,干扰限流等诸多问题。

image.png

dubbo protocol

其中 Flag 代表了 Dubbo 协议的标志位,一共 8 个地址位。低四位用来表示消息体数据用的序列化工具的类型(默认 hessian),高四位中,第一位为1表示是 request 请求,第二位为 1 表示双向传输(即有返回response),第三位为 1 表示是心跳事件。

心跳请求应当和普通请求区别对待。

注意和 HTTP 的 KeepAlive 区别对待

  • HTTP 协议的 KeepAlive 意图在于连接复用,同一个连接上串行方式传递请求-响应数据
  • TCP 的 KeepAlive 机制意图在于保活、心跳,检测连接错误。

这压根是两个概念。

KeepAlive 常见错误

启用 TCP KeepAlive 的应用程序,一般可以捕获到下面几种类型错误

  1. ETIMEOUT 超时错误,在发送一个探测保护包经过 (tcp_keepalive_time + tcp_keepalive_intvl * tcp_keepalive_probes)时间后仍然没有接收到 ACK 确认情况下触发的异常,套接字被关闭
  2. java.io.IOException: Connection timed out
  3. EHOSTUNREACH host unreachable(主机不可达)错误,这个应该是 ICMP 汇报给上层应用的。
  4. java.io.IOException: No route to host
  5. 链接被重置,终端可能崩溃死机重启之后,接收到来自服务器的报文,然物是人非,前朝往事,只能报以无奈重置宣告之。
  6. java.io.IOException: Connection reset by peer

总结

有三种使用 KeepAlive 的实践方案:

默认情况下使用 KeepAlive 周期为 2 个小时,如不选择更改,属于误用范畴,造成资源浪费:内核会为每一个连接都打开一个保活计时器,N 个连接会打开 N 个保活计时器。 优势很明显:

  • TCP 协议层面保活探测机制,系统内核完全替上层应用自动给做好了
  • 内核层面计时器相比上层应用,更为高效
  • 上层应用只需要处理数据收发、连接异常通知即可
  • 数据包将更为紧凑
  1. 关闭 TCP 的 KeepAlive,完全使用应用层心跳保活机制。由应用掌管心跳,更灵活可控,比如可以在应用级别设置心跳周期,适配私有协议。
  2. 业务心跳 + TCP KeepAlive 一起使用,互相作为补充,但 TCP 保活探测周期和应用的心跳周期要协调,以互补方可,不能够差距过大,否则将达不到设想的效果。

各个框架的设计都有所不同,例如 Dubbo 使用的是方案三,但阿里内部的 HSF 框架则没有设置 TCP 的 KeepAlive,仅仅由应用心跳保活。和心跳策略一样,这和框架整体的设计相关。

相关文章

  • TCP长连接与心跳保活

    可能很多 Java 程序员对 TCP 的理解只有一个三次握手,四次握手的认识,我觉得这样的原因主要在于 TCP 协...

  • netty 心跳包和断线重连机制

    为什么需要心跳包??? 心跳包主要是用来做TCP长连接保活的。有时 socket 虽然是连接的但中间网络可能有问题...

  • 长连接及心跳保活原理简介

      本文简要的分析了长连接产生的背景以及所解决的问题,并对比了keep-alive与心跳机制对长连接保活的影响,最...

  • 心跳协议设计

    为什么需要应用层心跳?Tcp Keepalive 能不能代替心跳? 保活一个客户端连接服务器以后,如果长期没有和服...

  • tcp长连接、心跳包

    长连接 TCP经过三次握手建立连接,长连接是指不管有无数据包的发送都长期保持建立的连接;有长连接自然也有短连接,短...

  • 谈谈长连接和心跳保活机制

    1.长连接介绍 通信双方进行TCP链接后进行通信,结束后不主动关闭链接优点:通信速度快,免去了DNS解析时间,以及...

  • swoole源码-tcp链接keep-alive机制

    swoole server中 tcp链接keep-alive保活设置很简单官方文档: TCP服务器心跳维持方案官方...

  • 【tcp】心跳检测,保活机制

    为什么要心跳检查? 因为目前讨论的数据连接场景,都是无源连接,排除NAT的情况,连接就是存在于src和dest两端...

  • HTTP 长连接和短连接

    1. HTTP 协议与 TCP/IP 协议的关系 HTTP 长连接和短连接 === TCP 长连接和短连接。HTT...

  • 分析 HTTP,TCP 的长连接和短连接以及 sock

    HTTP 协议与 TCP/IP 协议的关系 HTTP 的长连接和短连接本质上是 TCP 长连接和短连接。HTTP ...

网友评论

    本文标题:TCP长连接与心跳保活

    本文链接:https://www.haomeiwen.com/subject/immpuctx.html