美文网首页生物信息学R语言源码
2020-01-20循环语句从训练集中找COX模型并测试集验证

2020-01-20循环语句从训练集中找COX模型并测试集验证

作者: 海阔天空周 | 来源:发表于2020-01-25 19:22 被阅读0次

前面的程序接上次从训练集到测试集到总数那篇文章,这篇加个FOR循环语句,自己找达到条件的模型

for(k in 80:10000){set.seed(k)

  trainsam<-sample(rownames(sigcoxdata),length(rownames(sigcoxdata))/2)

  trainsam1<-rownames(sigcoxdata)%in%trainsam

  coxtrain<-sigcoxdata[trainsam1,]

  coxtest<-sigcoxdata[!trainsam1,]

  ###单因素回归分析

  univar4_out<-data.frame(matrix(NA,(ncol(coxtrain)-2),5))

  rownames(univar4_out)<-colnames(coxtrain)[-c(1:2)]

  colnames(univar4_out)<-c("Coeffcient","HR","lower.95","upper.95","P-Value")

  for (i in colnames(coxtrain)[-c(1:2)]) {

    cox<-coxph(Surv(life_span,status)~coxtrain[,i],data = coxtrain)

    cox4_summary<-summary(cox)

    univar4_out[i,1]<-cox4_summary$coefficients[,1]

    univar4_out[i,2]<-cox4_summary$coefficients[,2]

    univar4_out[i,3]<-cox4_summary$conf.int[,3]

    univar4_out[i,4]<-cox4_summary$conf.int[,4]

    univar4_out[i,5]<-cox4_summary$coefficients[,5]

  }

  uni001<-univar4_out[univar4_out$`P-Value`<0.01,]

  uni005<-univar4_out[univar4_out$`P-Value`<0.05,]

  ###多因素回归并建模

  siggenename<-rownames(uni005)

  coxmultidata<-cbind(coxtrain[,c(1,2)],coxtrain[,siggenename])

  coxmulti<-coxph(Surv(life_span,status)~.,data = coxmultidata)

  cox_model<-step(coxmulti,direction = "both")

  cox_model

  cox_sum<-summary(cox_model)

  multivar4_out<-data.frame(matrix(NA,length(rownames(cox_sum$coefficients)),5))

  rownames(multivar4_out)<-rownames(cox_sum$coefficients)

  colnames(multivar4_out)<-c("Coeffcient","HR","lower.95","upper.95","P-Value")

  multivar4_out[,1]<-cox_sum$coefficients[,1]

  multivar4_out[,2]<-cox_sum$coefficients[,2]

  multivar4_out[,3]<-cox_sum$conf.int[,3]

  multivar4_out[,4]<-cox_sum$conf.int[,4]

  multivar4_out[,5]<-cox_sum$coefficients[,5]

  coxgenename<-rownames(multivar4_out)

  #######根据模型将数据分为high,low.并制作生存曲线

  #coxgenename<-c("ENSG00000225194","ENSG00000214145","ENSG00000231324","ENSG00000234996",

  #              "ENSG00000236908","ENSG00000245685","ENSG00000256039","ENSG00000256417",

  #              "ENSG00000266970","ENSG00000270547","ENSG00000272449","ENSG00000273472")

  ###添加基因,"ENSG00000228918","ENSG00000230454","ENSG00000249917",

  ###,"ENSG00000265933","ENSG00000270547","ENSG00000272449","ENSG00000272512","ENSG00000272953","ENSG00000267260")

  coxtraindata<-cbind(coxtrain[,c(1,2)],coxtrain[,coxgenename])

  coxscore<-predict(cox_model,type = "risk",newdata = coxtraindata)

  coxrisk<-as.vector(ifelse(coxscore>median(coxscore),"high","low"))

  trainriskdata<-cbind(coxtrain[,c(1,2)],coxscore,coxrisk)

  colnames(trainriskdata)<-c("status","life_span","riskscore","risk")

  ###做多因素森林图

  #library(survminer)

  #ggforest(cox_model,main = "Hazard ratio",cpositions = c(0.02,0.22, 0.4), fontsize = 0.7, refLabel = "reference", noDigits = 2)

  ##生存分析

  diff_train<-survdiff(Surv(life_span,status)~risk,data = trainriskdata)

  p_valuetrain<-signif((1 - pchisq(diff_train$chisq,df=1)),3)

  p_valuetrain

  fit_curve_train<-survfit(Surv(life_span,status)~risk,data = trainriskdata)##生存曲线做图

  plot(fit_curve_train,col=c("red","blue"),xlab = "time(years)",ylab = "survival rate",

      main="survival curve of train set",mark.time=T)

  #legend(5,.4,paste("High risk (n=",nrow(allriskdata[allriskdata[,4]=="high",]),")",sep = ""),lty = NULL,text.col = "red",bty = "n")

  #legend(5,.3,paste("Low risk (n=",nrow(allriskdata[allriskdata[,4]=="low",]),")",sep = ""),lty = NULL,text.col = "blue",bty = "n")

  legend(15,.2,paste("P value =",p_valuetrain,sep = ""),lty = NULL,col = "black",bty = "n")

  ##绘制ROC曲线

  roctrain<-survivalROC(Stime = trainriskdata$life_span,status = trainriskdata$status,marker = trainriskdata$riskscore,

                        predict.time = 5,method = "KM")

  plot(roctrain$FP,roctrain$TP,type = "l",xlim = c(0,1),ylim = c(0,1),col="green")

  roctrain$AUC

  ###训练集检测结果

  coxtestdata<-cbind(coxtest[,1:2],coxtest[,coxgenename])

  coxtestscore<-predict(cox_model,type = "risk",newdata = coxtestdata)

  coxtestrisk<-as.vector(ifelse(coxtestscore>median(coxscore),"high","low"))

  testriskdata<-cbind(coxtestdata[,c(1,2)],coxscore,coxrisk)

  colnames(testriskdata)<-c("status","life_span","riskscore","risk")

  ##训练集生存分析和ROC曲线

  diff_test<-survdiff(Surv(life_span,status)~risk,data = testriskdata)

  p_valuetest<-signif((1 - pchisq(diff_test$chisq,df=1)),3)

  p_valuetest

  fit_curve_test<-survfit(Surv(life_span,status)~risk,data = testriskdata)##生存曲线做图

  plot(fit_curve_test,col=c("red","blue"),xlab = "time(years)",ylab = "survival rate",

      main="survival curve of test set",mark.time=T)

  #legend(5,.4,paste("High risk (n=",nrow(allriskdata[allriskdata[,4]=="high",]),")",sep = ""),lty = NULL,text.col = "red",bty = "n")

  #legend(5,.3,paste("Low risk (n=",nrow(allriskdata[allriskdata[,4]=="low",]),")",sep = ""),lty = NULL,text.col = "blue",bty = "n")

  legend(15,.2,paste("P value =",p_valuetest,sep = ""),lty = NULL,col = "black",bty = "n")

  roctest<-survivalROC(Stime = testriskdata$life_span,status = testriskdata$status,marker = testriskdata$riskscore,

                      predict.time = 5,method = "KM")

  plot(roctest$FP,roctest$TP,type = "l",xlim = c(0,1),ylim = c(0,1),col="green")

  roctest$AUC

 print(k)

  print(p_valuetest)

  print(roctest$AUC)

  if(p_valuetest<0.05&roctest$AUC>0.7){bresk;}

}

相关文章

网友评论

    本文标题:2020-01-20循环语句从训练集中找COX模型并测试集验证

    本文链接:https://www.haomeiwen.com/subject/irqszctx.html