美文网首页
Ubuntu 16.04 深度学习框架配置

Ubuntu 16.04 深度学习框架配置

作者: tjkt24 | 来源:发表于2017-07-15 11:11 被阅读0次

    Deep Learning Frameworks Configuration

    主要是Ubuntu 16.04 + cuda7.5 + cudnn5.0 + python2 + Matlab2014b + theano0.8.2 + caffe的配置,但是Ubuntu 16.04 + cuda8.0 + cudnn5.0 + python2 + tensorflow + theano + opencv 3.2 + caffe也类似

    主要参考
    http://www.linuxidc.com/Linux/2016-07/132860.htm
    http://blog.csdn.net/g0m3e/article/details/51420565
    http://blog.csdn.net/yahag/article/details/51968004
    http://blog.csdn.net/lien0906/article/details/46816243
    http://blog.csdn.net/ubunfans/article/details/47724341

    [TOC] 依然不支持。。。

    1. 安装依赖包

    sudo apt-get install build-essential  # basic requirement
    sudo apt-get install libprotobuf-dev libleveldb-dev libsnappy-dev libopencv-dev libhdf5-serial-dev protobuf-compiler
    sudo apt-get install --no-install-recommends libboost-all-dev
    sudo apt-get install libatlas-base-dev
    sudo apt-get install libgflags-dev libgoogle-glog-dev liblmdb-dev
    

    2. 安装nvidia显卡驱动

    添加官方源 sudo add-apt-repository ppa:graphics-drivers/ppa
    在系统设置,Software&Updates中选Additional Drivers,选显卡驱动,重启
    查看是否安装成功 nvidia-settings

    3. 安装 cuda7.5 for ubuntu 15.04 runfile(local) (cuda 8.0类似)

    # cd 到目录文件
    chmod 777 cuda_7.5.18_linux.run
    sudo ./cuda_7.5.18_linux.run --override
    # 注意不要再次安装nvidia驱动
    
    ================Problem:==============
    Missing recommended library: libGLU.so
    Missing recommended library: libXmu.so
    
    $ sudo apt-get install libglu1-mesa libxi-dev libxmu-dev libglu1-mesa-dev
    $ sudo ln -s /usr/lib/x86_64-linux-gnu/libGLU.so /usr/lib/libGLU.so
    $ sudo ln -s /usr/lib/x86_64-linux-gnu/libXmu.so /usr/lib/libXmu.so
    $ sudo ldconfig
    ======================================
    

    4.更新cudnn5.0动态库,下载解压

    # cd到cudnn5.0解压后的include目录
    sudo cp cudnn.h /usr/local/cuda/include/
    # cd到lib64目录
    sudo cp lib* /usr/local/cuda/lib64/
    # 建立链接
    cd /usr/local/cuda/lib64/
    sudo rm -rf libcudnn.so libcudnn.so.5
    sudo ln -s libcudnn.so.5.0.5 libcudnn.so.5
    sudo ln -s libcudnn.so.5 libcudnn.so
    # 设置环境变量和动态链接库
    sudo gedit /etc/profile
    
    # 末尾添加
    # PATH=/usr/local/cuda/bin:$PATH
    # export PATH
    
    # 保存之后,创建链接文件
    sudo vim /etc/ld.so.conf.d/cuda.conf
    
    # 输入
    # /usr/local/cuda/lib64
    
    # 使链接生效
    sudo ldconfig
    

    5. cuda用例安装与测试

    cd /usr/local/cuda-7.5/include
    sudo cp host_config.h host_config.h.bak
    sudo gedit host_config.h
    
    # 找到下面这段
    # if GNUC > 4 || (GNUC == 4 && GNUC_MINOR > 9) #改4为5
    # error – unsupported GNU version! gcc versions later than 4.9 are not supported!
    # endif /* GNUC > 4 || (GNUC == 4 && GNUC_MINOR > 9) */
    
    # 编译,测试
    cd /usr/local/cuda/samples
    sudo make all -j4
    cd /usr/local/cuda/samples/bin/x86_64/linux/release
    sudo ./deviceQuery
    

    6. BLAS用Atlas

    sudo apt-get install libatlas-base-dev
    

    7. python配置

    这一步更多的是为后面装Theano做准备,用pip 安装numpy,scipy,解决依赖关系,这几步可能出错,至关重要。。。

    sudo apt-get install python-pip
    sudo pip install numpy
    sudo pip install scipy
    
    sudo pip install matplotlib ipython jupyter pandas sympy nose spyder
    # (sudo apt-get install python-matplotlib ipython ipython-notebook python-pandas python-sympy python-nose)
    
    pip install -U scikit-learn
    # (测试sklearn nosetests -v sklearn)
    
    # cd到caffe目录python文件夹
    sudo su
    for req in $(cat requirements.txt); do pip install -i https://pypi.tuna.tsinghua.edu.cn/simple $req; done
    # 如果第一次有很多红字错误,再运行几遍指导安装成功,对于黄字提示无需理会,可能是pip版本需要更新
    
    # 测试numpy, scipy
    python -c "import numpy;numpy.test()"
    python -c "import scipy;scipy.test()"
    

    8. 安装Matlab2014b

    http://www.jianshu.com/p/f0cefc737dda

    # 加入系统环境变量
    sudo gedit /etc/profile
    
    # PATH="$PATH:/opt/MATLAB/R2014b/bin"
    
    source /etc/profile
    

    matlab shortcuts设置
    具体 HOME > ENVIRONMENT > Preferences > Keyboard > Shortcuts
    然后把“Emacs Default Set”改成“Windows Default Set” 保存,OK!

    9. OpenCV (!慎重,可能不成功)

    安装OpenCV3.1.0

    sudo apt-get install libqt4-dev libopencv-dev build-essential cmake git libgtk2.0-dev pkg-config python-dev libdc1394-22
    sudo apt-get install libdc1394-22-dev libjpeg-dev libpng12-dev libtiff5-dev libjasper-dev libavcodec-dev libavformat-dev
    sudo apt-get install libswscale-dev libxine2-dev libgstreamer0.10-dev libgstreamer-plugins-base0.10-dev libv4l-dev
    sudo apt-get install libtbb-dev  libfaac-dev libmp3lame-dev libopencore-amrnb-dev libopencore-amrwb-dev libtheora-dev
    sudo apt-get install libvorbis-dev libxvidcore-dev x264 v4l-utils unzip
    
    mkdir build
    cd build/
    cmake -D CMAKE_BUILD_TYPE=RELEASE -D CMAKE_INSTALL_PREFIX=/usr/local ..
    make -j4
    sudo make install
    
    # 在/usr/local目录下查找opencv库所在位置,我在解答看到有人是在/usr/local/opencv和/usr/local/opencv2下面,
    # 但我这里是在/usr/local/lib下找到的。如果找不到,可尝试:
    
    sudo updatedb && locate libopencv_core.so.3.1 # 3.1为版本号
    
    # 新建文件:
    sudo vim /etc/ld.so.conf.d/opencv.conf
    #     写入地址/usr/local/lib,并保存
    
    sudo ldconfig -v
    
    # ===================================== 不用
    # 修改build文件夹下的flags.make(全部)
    #
    # CXX_FLAGS =  -fsigned-char
    # 为(添加-O3 -fPIC)
    # CXX_FLAGS =  -O3 -fPIC  -fsigned-char
    # =====================================
    

    10. 安装tensorflow

    两种方式安装:不通过源码编译的话,目前需要cuda8.0+cudnn5.0,按照官网指示安装,比较简单;源码安装容易出问题。

    https://www.tensorflow.org/versions/r0.12/get_started/os_setup.html#pip-installation

    # Ubuntu/Linux 64-bit, GPU enabled, Python 2.7
    # Requires CUDA toolkit 8.0 and CuDNN v5. For other versions, see "Installing from sources" below.
    export TF_BINARY_URL=https://storage.googleapis.com/tensorflow/linux/gpu/tensorflow_gpu-0.12.0rc1-cp27-none-linux_x86_64.whl
    

    11. 配置caffe

    # cd到caffe目录
    sudo cp Makefile.config.example Makefile.config
    sudo gedit Makefile.config
    
    # 将USE_CUDNN := 1 取消注释,在
    # INCLUDE_DIRS := $(PYTHON_INCLUDE) /usr/local/include后面打上一个空格
    # 添加/usr/include/hdf5/serial
    # 这是因为ubuntu16.04的文件包含位置发生了变化,尤其是需要用到的hdf5的位置,所以需要更改这一路径,
    # 如果没有这一句可能会报一个找不到hdf5.h的错误
    # PYTHON_INCLUDE := /usr/include/python2.7 \
    #   /usr/lib/python2.7/dist-packages/numpy/core/include先不做更改。
    # 如果是需要生成matlab的caffe wrapper,取消注释MATLAB_DIR然后替换为自己的目录
    # MATLAB_DIR := /opt/MATLAB/R2014b
    
    
    # make之前先解决下面问题
    # ================Problem:==============
    # /usr/bin/ld: cannot find -lhdf5_hl
    # /usr/bin/ld: cannot find -lhdf5
    # collect2: error: ld returned 1 exit status
    # Makefile:566: recipe for target '.build_release/lib/libcaffe.so.1.0.0-rc3' failed
    # make: *** [.build_release/lib/libcaffe.so.1.0.0-rc3] Error 1
    #
    # 在打开的Makefile.config修改如下内容:
    # INCLUDE_DIRS := $(PYTHON_INCLUDE) /usr/local/include
    # LIBRARY_DIRS := $(PYTHON_LIB) /usr/local/lib /usr/lib
    # 修改为:
    # INCLUDE_DIRS := $(PYTHON_INCLUDE) /usr/local/include /usr/include/hdf5/serial
    # libraryY_DIRS := $(PYTHON_LIB) /usr/local/lib /usr/lib
    # 为hdf5之类的文件创建新的链接
    #
    # cd /usr/lib/x86_64-linux-gnu
    # sudo ln -s libhdf5_serial.so.10.1.0 libhdf5.so
    # sudo ln -s libhdf5_serial_hl.so.10.0.2 libhdf5_hl.so
    # sudo ldconfig
    # # 这里的10.1.0和10.0.2根据不同的系统可能对应的数字会不同,比如在ubuntu15.10中其数字就是8.0.2.
    #
    # ======================================
    #
    # ================Problem:==============
    # string.h ‘memcy’ was not declared in this scope
    #
    # 由于gcc编译器版本太新,解决方法是打开makefile搜索并替换
    # NVCCFLAGS += -ccbin=$(CXX) -Xcompiler -fPIC $(COMMON_FLAGS)
    # 为
    # NVCCFLAGS += -D_FORCE_INLINES -ccbin=$(CXX) -Xcompiler -fPIC $(COMMON_FLAGS)
    # 保存退出
    # ======================================
    
    # cd到caffe目录
    
    make all -j4
    make test -j4
    make runtest
    make matcaffe  # 可能g++版本太高,会有warning,但还是会编译通过,不知道成功没,没用过
    make pycaffe
    make distribute
    
    # 写入系统环境变量
    sudo gedit /etc/profile
    # PYTHONPATH="/.../caffe-master/python:$PYTHONPATH"
    # export PYTHONPATH
    source /etc/profile
    # 或者写入用户环境变量
    sudo gedit ~/.bashrc
    # export PYTHONPATH="/..../caffe-master/python:$PYTHONPATH"
    source ~/.bashrc
    # 之后编译链接库,打开python,输入:
    
    python
    import caffe
    
    至此caffe配置编译完成#
    

    12. 安装Theano

    sudo pip install theano
    python -c "import theano; theano.test()"
    # 这里theano.test()报错很正常,不用管
    sudo gedit ~/.theanorc
    
    # [global]
    # device=gpu
    # floatX=float32
    #
    # [blas]
    # ldflags=
    #
    # [cuda]
    # root=/usr/local/cuda
    #
    # [nvcc]
    # flags=-D_FORCE_INLINES
    
    python
    import theano
    # Using gpu device 0: GeForce GT xxx (CNMeM is disabled, cuDNN 5005)
    

    相关文章

      网友评论

          本文标题:Ubuntu 16.04 深度学习框架配置

          本文链接:https://www.haomeiwen.com/subject/ismahxtx.html