美文网首页
Difference between "tf.Variable

Difference between "tf.Variable

作者: 宣雄民 | 来源:发表于2019-02-09 21:27 被阅读0次

    The following content is what i have quoted from

    1. "CSDN - adrianna_xy"
      Original link - https://blog.csdn.net/u012223913/article/details/78533910
    1. tf.Variable()
      W = tf.Variable(<initial-value>, name=<optional-name>)
      用于生成一个初始值为initial-value的变量。必须指定初始化值
    1. tf.get_variable()
      W = tf.get_variable(name, shape=None, dtype=tf.float32, initializer=None,
      regularizer=None, trainable=True, collections=None)
      获取已存在的变量(要求不仅名字,而且初始化方法等各个参数都一样),如果不存在,就新建一个。
      可以用各种初始化方法,不用明确指定值。
    1. 区别
      推荐使用tf.get_variable(), 因为:
      _初始化更方便
      比如用xavier_initializer:
      W = tf.get_variable("W", shape=[784, 256],
      initializer=tf.contrib.layers.xavier_initializer())
      _方便共享变量
      因为tf.get_variable() 会检查当前命名空间下是否存在同样name的变量,可以方便共享变量。而tf.Variable 每次都会新建一个变量。
      需要注意的是tf.get_variable() 要配合reuse和tf.variable_scope() 使用。
    1. 举个栗子
      4.1 首先介绍一下tf.variable_scope().
      如果已经存在的变量没有设置为共享变量,TensorFlow 运行到第二个拥有相同名字的变量的时候,就会报错。为了解决这个问题,TensorFlow 提出了 tf.variable_scope 函数:它的主要作用是,在一个作用域 scope 内共享一些变量,举个简单的栗子:
      with tf.variable_scope("foo"):
      v = tf.get_variable("v", [1]) #v.name == "foo/v:0"
      简单来说就是给变量名前再加了个变量空间名。
      4.2 对比
      接下来看看怎么用tf.get_variable()实现共享变量:
      with tf.variable_scope("one"):
      a = tf.get_variable("v", [1]) #a.name == "one/v:0"
      with tf.variable_scope("one"):
      b = tf.get_variable("v", [1]) #创建两个名字一样的变量会报错 ValueError: Variable one/v already exists
      with tf.variable_scope("one", reuse = True): #注意reuse的作用。
      c = tf.get_variable("v", [1]) #c.name == "one/v:0" 成功共享,因为设置了reuse
      assert a==c #Assertion is true, they refer to the same object.
      然后看看如果用tf.Variable() 会有什么效果:
      with tf.variable_scope("two"):
      d = tf.get_variable("v", [1]) #d.name == "two/v:0"
      e = tf.Variable(1, name = "v", expected_shape = [1]) #e.name == "two/v_1:0"
      assert d==e #AssertionError: they are different objects
      可以看到,同样的命名空间(‘two’)和名字(v),但是d和e的值却不一样。
      Reference:
      https://stackoverflow.com/questions/37098546/difference-between-variable-and-get-variable-in-tensorflow
      https://www.tensorflow.org/versions/r1.2/api_docs/python/tf/variable_scope
      http://blog.csdn.net/u013645510/article/details/53769689
    1. Chetan Ruparel - Which is preferred in TensorFlow, tf.Variable or tf.get_variable?

    I would recommend to use tf.get_Variable as it will make refactoring code easy and plus it doesn't create any problems when using multiple GPU. tf.gets_Variable sees or gets the variable ,if not found it would create it . We can specify the initializer such as xavier_initializer.
    tf.Variable always creates variable. It requires an initial value .To know more about tf.Variable ,go to Getting started with TensorFlow
    tf.Variable is kinda old ,lower level and tf.get_Variable is newer and better
    [1] Information, syntax and example for tf.Variable
    Footnotes
    [1] Getting started with TensorFlow

    相关文章

      网友评论

          本文标题:Difference between "tf.Variable

          本文链接:https://www.haomeiwen.com/subject/isvzsqtx.html