美文网首页
08 ML AdaBoost

08 ML AdaBoost

作者: peimin | 来源:发表于2016-05-18 23:03 被阅读0次

    from: ML In Action

    '''
    Created on Nov 28, 2010
    Adaboost is short for Adaptive Boosting
    @author: Peter
    '''
    from numpy import *
    
    def loadSimpData():
        datMat = matrix([[ 1. ,  2.1],
            [ 2. ,  1.1],
            [ 1.3,  1. ],
            [ 1. ,  1. ],
            [ 2. ,  1. ]])
        classLabels = [1.0, 1.0, -1.0, -1.0, 1.0]
        return datMat,classLabels
    
    def loadDataSet(fileName):      #general function to parse tab -delimited floats
        numFeat = len(open(fileName).readline().split('\t')) #get number of fields 
        dataMat = []; 
        labelMat = []
    
        fr = open(fileName)
        for line in fr.readlines():
            lineArr =[]
            curLine = line.strip().split('\t')
            for i in range(numFeat-1):
                lineArr.append(float(curLine[i]))
    
            dataMat.append(lineArr)
            labelMat.append(float(curLine[-1]))
        return dataMat,labelMat
    
    def stumpClassify(dataMatrix,dimen,threshVal,threshIneq):#just classify the data
        retArray = ones((shape(dataMatrix)[0],1))
        if threshIneq == 'lt':
            retArray[dataMatrix[:,dimen] <= threshVal] = -1.0
        else:
            retArray[dataMatrix[:,dimen] > threshVal] = -1.0
        return retArray
        
    # 计算最佳单层决策树
    def buildStump(dataArr,classLabels,D):
        dataMatrix = mat(dataArr); 
        labelMat   = mat(classLabels).T
        m,n        = shape(dataMatrix)
        numSteps   = 10.0; 
        bestStump  = {}; 
    
        bestClasEst = mat(zeros((m,1)))
        minError    = inf #init error sum, to +infinity
        
        for i in range(n): # 在数据集的所有特征上遍历
            rangeMin = dataMatrix[:,i].min(); 
            rangeMax = dataMatrix[:,i].max();
    
            stepSize = (rangeMax-rangeMin)/numSteps
    
            # 再在这些值上遍历
            for j in range(-1,int(numSteps)+1):#loop over all range in current dimension
    
                # 大于小于之间切换不等式
                for inequal in ['lt', 'gt']: #go over less than and greater than
                    threshVal     = (rangeMin + float(j) * stepSize)
                    predictedVals = stumpClassify(dataMatrix,i,threshVal,inequal)#call stump classify with i, j, lessThan
                    errArr        = mat(ones((m,1)))
    
                    errArr[predictedVals == labelMat] = 0
                    weightedError = D.T*errArr  # 计算加权错误率
    
                    #print "split: dim %d, thresh %.2f, thresh ineqal: %s, the weighted error is %.3f" % (i, threshVal, inequal, weightedError)
                    # 低于最低错误率 则将当前最佳单层决策树设为最佳
                    if weightedError < minError:
                        minError    = weightedError
                        bestClasEst = predictedVals.copy()
    
                        bestStump['dim'] = i
                        bestStump['thresh'] = threshVal
                        bestStump['ineq'] = inequal
        return bestStump,minError,bestClasEst
    
    def adaBoostTrainDS(dataArr,classLabels,numIt=40):
        weakClassArr = []
        m = shape(dataArr)[0]
        D = mat(ones((m,1))/m)   #init D to all equal
        aggClassEst = mat(zeros((m,1)))
    
        # 不断训练直到调整权重后 训练错误率为0或者达到用户指定的数为止
        for i in range(numIt):
            # 找到最佳的单层决策树
            bestStump,error,classEst = buildStump(dataArr,classLabels,D)#build Stump
            #print "D:",D.T
    
            # alpha 为每个分类器的权重
            alpha = float(0.5*log((1.0-error)/max(error,1e-16)))#calc alpha, throw in max(error,eps) to account for error=0
            bestStump['alpha'] = alpha  
    
            # 添加到弱分类器组中
            weakClassArr.append(bestStump)                  #store Stump Params in Array
            #print "classEst: ",classEst.T
            
            expon = multiply(-1*alpha*mat(classLabels).T, classEst) #exponent for D calc, getting messy
            
            # 计算新的权重向量D 正确分类的样本权重变低 错误的变高
            D = multiply(D,exp(expon))                              #Calc New D for next iteration
            D = D/D.sum()
            #calc training error of all classifiers, if this is 0 quit for loop early (use break)
            
            aggClassEst += alpha*classEst
            #print "aggClassEst: ",aggClassEst.T
            aggErrors = multiply(sign(aggClassEst) != mat(classLabels).T,ones((m,1)))
            errorRate = aggErrors.sum()/m
            print "total error: ",errorRate
    
            if errorRate == 0.0: # 错误率为0
                break
        return weakClassArr
    
    def adaClassify(datToClass,classifierArr):
        dataMatrix  = mat(datToClass)#do stuff similar to last aggClassEst in adaBoostTrainDS
        m           = shape(dataMatrix)[0]
        aggClassEst = mat(zeros((m,1)))
    
        for i in range(len(classifierArr)):
            classEst = stumpClassify(dataMatrix, \
                                     classifierArr[i]['dim'],\
                                     classifierArr[i]['thresh'],\
                                     classifierArr[i]['ineq'])#call stump classify
            
            aggClassEst += classifierArr[i]['alpha']*classEst
            print aggClassEst
    
        return sign(aggClassEst)
    
    def plotROC(predStrengths, classLabels):
        import matplotlib.pyplot as plt
        cur = (1.0,1.0) #cursor
        ySum = 0.0 #variable to calculate AUC
        numPosClas = sum(array(classLabels)==1.0)
        yStep = 1/float(numPosClas); xStep = 1/float(len(classLabels)-numPosClas)
        sortedIndicies = predStrengths.argsort()#get sorted index, it's reverse
        fig = plt.figure()
        fig.clf()
        ax = plt.subplot(111)
        #loop through all the values, drawing a line segment at each point
        for index in sortedIndicies.tolist()[0]:
            if classLabels[index] == 1.0:
                delX = 0; delY = yStep;
            else:
                delX = xStep; delY = 0;
                ySum += cur[1]
            #draw line from cur to (cur[0]-delX,cur[1]-delY)
            ax.plot([cur[0],cur[0]-delX],[cur[1],cur[1]-delY], c='b')
            cur = (cur[0]-delX,cur[1]-delY)
        ax.plot([0,1],[0,1],'b--')
        plt.xlabel('False positive rate'); plt.ylabel('True positive rate')
        plt.title('ROC curve for AdaBoost horse colic detection system')
        ax.axis([0,1,0,1])
        plt.show()
        print "the Area Under the Curve is: ",ySum*xStep
    

    相关文章

      网友评论

          本文标题:08 ML AdaBoost

          本文链接:https://www.haomeiwen.com/subject/ivgwrttx.html