美文网首页
Hudi on Flink 快速上手指南

Hudi on Flink 快速上手指南

作者: Flink中文社区 | 来源:发表于2021-03-29 15:37 被阅读0次

    摘要:本文由阿里巴巴的陈玉兆分享,主要介绍 Flink 集成 Hudi 的最新版本功能以及快速上手实践指南。内容包括:

    1. 背景
    2. 环境准备
    3. Batch 模式的读写
    4. Streaming 读
    5. 总结

    一、背景

    Apache Hudi 是目前最流行的数据湖解决方案之一,Data Lake Analytics[1] 集成了 Hudi 服务高效的数据 MERGE(UPDATE/DELETE)场景;AWS 在 EMR 服务中 预安装[2] 了 Apache Hudi,为用户提供高效的 record-level updates/deletes 和高效的数据查询管理;Uber [3]已经稳定运行 Apache Hudi 服务 4 年多,提供了低延迟的数据库同步和高效率的查询[4]。自 2016 年 8 月上线以来,数据湖存储规模已经超过 100PB[5]。

    Apache Flink 作为目前最流行的流计算框架,在流式计算场景有天然的优势,当前,Flink 社区也在积极拥抱 Hudi 社区,发挥自身 streaming 写/读的优势,同时也对 batch 的读写做了支持。

    Hudi 和 Fink 在 0.8.0 版本做了大量的集成工作[6]。核心的功能包括:

    • 实现了新的 Flink streaming writer
    • 支持 batch 和 streaming 模式 reader
    • 支持 Flink SQL API

    Flink streaming writer 通过 state 实现了高效的 index 方案,同时 Hudi 在 UPDATE/DELETE 上的优秀设计使得 Flink Hudi 成为当前最有潜力的 CDC 数据入湖方案,因为篇幅关系,将在后续的文章中介绍。

    本文用 Flink SQL Client 来简单的演示通过 Flink SQL API 的方式实现 Hudi 表的操作,包括 batch 模式的读写和 streaming 模式的读。

    二、环境准备

    本文使用 Flink Sql Client[7] 作为演示工具,SQL CLI 可以比较方便地执行 SQL 的交互操作。

    第一步:下载 Flink jar

    Hudi 集成了 Flink 的 1.11 版本。您可以参考这里[8]来设置 Flink 环境。hudi-flink-bundle jar 是一个集成了 Flink 相关的 jar 的 uber jar, 目前推荐使用 scala 2.11 来编译。

    第二步:设置 Flink 集群

    启动一个 standalone 的 Flink 集群。启动之前,建议将 Flink 的集群配置设置如下:

    • 在 $FLINK_HOME/conf/flink-conf.yaml 中添加配置项 taskmanager.numberOfTaskSlots: 4
    • 在 $FLINK_HOME/conf/workers 中将条目 localhost 设置成 4 行,这里的行数代表了本地启动的 worker 数

    启动集群:

    # HADOOP_HOME is your hadoop root directory after unpack the binary package.
    export HADOOP_CLASSPATH=`$HADOOP_HOME/bin/hadoop classpath`
    # Start the flink standalone cluster
    ./bin/start-cluster.sh
    

    第三步:启动 Flink SQL Client

    Hudi 的 bundle jar 应该在 Sql Client 启动的时候加载到 CLASSPATH 中。您可以在路径 hudi-source-dir/packaging/hudi-flink-bundle 下手动编译 jar 包或者从 Apache Official Repository [9]下载。

    启动 SQL CLI:

    # HADOOP_HOME is your hadoop root directory after unpack the binary package.
    export HADOOP_CLASSPATH=`$HADOOP_HOME/bin/hadoop classpath`
    ./bin/sql-client.sh embedded -j .../hudi-flink-bundle_2.1?-*.*.*.jar shell
    

    备注:

    • 推荐使用 hadoop 2.9.x+ 版本,因为一些对象存储(aliyun-oss)从这个版本开始支持
    • flink-parquet 和 flink-avro 已经被打进 hudi-flink-bundle jar
    • 您也可以直接将 hudi-flink-bundle jar 拷贝到 $FLINK_HOME/lib 目录下
    • 本文的存储选取了对象存储 aliyun-oss,为了方便,您也可以使用本地路径

    演示的工作目录结构如下:

    /Users/chenyuzhao/workspace/hudi-demo
      /- flink-1.11.3
      /- hadoop-2.9.2
    

    三、Batch 模式的读写

    插入数据

    使用如下 DDL 语句创建 Hudi 表:

    Flink SQL> create table t2(
    >   uuid varchar(20),
    >   name varchar(10),
    >   age int,
    >   ts timestamp(3),
    >   `partition` varchar(20)
    > )
    > PARTITIONED BY (`partition`)
    > with (
    >   'connector' = 'hudi',
    >   'path' = 'oss://vvr-daily/hudi/t2'
    > );
    [INFO] Table has been created.
    

    DDL 里申明了表的 path,record key 为默认值 uuid,pre-combine key 为默认值 ts 。

    然后通过 VALUES 语句往表中插入数据:

    Flink SQL> insert into t2 values
    >   ('id1','Danny',23,TIMESTAMP '1970-01-01 00:00:01','par1'),
    >   ('id2','Stephen',33,TIMESTAMP '1970-01-01 00:00:02','par1'),
    >   ('id3','Julian',53,TIMESTAMP '1970-01-01 00:00:03','par2'),
    >   ('id4','Fabian',31,TIMESTAMP '1970-01-01 00:00:04','par2'),
    >   ('id5','Sophia',18,TIMESTAMP '1970-01-01 00:00:05','par3'),
    >   ('id6','Emma',20,TIMESTAMP '1970-01-01 00:00:06','par3'),
    >   ('id7','Bob',44,TIMESTAMP '1970-01-01 00:00:07','par4'),
    >   ('id8','Han',56,TIMESTAMP '1970-01-01 00:00:08','par4');
    [INFO] Submitting SQL update statement to the cluster...
    [INFO] Table update statement has been successfully submitted to the cluster:
    Job ID: 59f2e528d14061f23c552a7ebf9a76bd
    

    这里看到 Flink 的作业已经成功提交到集群,可以本地打开 web UI 观察作业的执行情况:

    image.png

    查询数据

    作业执行完成后,通过 SELECT 语句查询表结果:

    Flink SQL> set execution.result-mode=tableau;
    [INFO] Session property has been set.
    Flink SQL> select * from t2;
    +-----+----------------------+----------------------+-------------+-------------------------+----------------------+
    | +/- |                 uuid |                 name |         age |                      ts |            partition |
    +-----+----------------------+----------------------+-------------+-------------------------+----------------------+
    |   + |                  id3 |               Julian |          53 |     1970-01-01T00:00:03 |                 par2 |
    |   + |                  id4 |               Fabian |          31 |     1970-01-01T00:00:04 |                 par2 |
    |   + |                  id7 |                  Bob |          44 |     1970-01-01T00:00:07 |                 par4 |
    |   + |                  id8 |                  Han |          56 |     1970-01-01T00:00:08 |                 par4 |
    |   + |                  id1 |                Danny |          23 |     1970-01-01T00:00:01 |                 par1 |
    |   + |                  id2 |              Stephen |          33 |     1970-01-01T00:00:02 |                 par1 |
    |   + |                  id5 |               Sophia |          18 |     1970-01-01T00:00:05 |                 par3 |
    |   + |                  id6 |                 Emma |          20 |     1970-01-01T00:00:06 |                 par3 |
    +-----+----------------------+----------------------+-------------+-------------------------+----------------------+
    Received a total of 8 rows
    

    这里执行语句 set execution.result-mode=tableau; 可以让查询结果直接输出到终端。

    通过在 WHERE 子句中添加 partition 路径来裁剪 partition:

    Flink SQL> select * from t2 where `partition` = 'par1';
    +-----+----------------------+----------------------+-------------+-------------------------+----------------------+
    | +/- |                 uuid |                 name |         age |                      ts |            partition |
    +-----+----------------------+----------------------+-------------+-------------------------+----------------------+
    |   + |                  id1 |                Danny |          23 |     1970-01-01T00:00:01 |                 par1 |
    |   + |                  id2 |              Stephen |          33 |     1970-01-01T00:00:02 |                 par1 |
    +-----+----------------------+----------------------+-------------+-------------------------+----------------------+
    Received a total of 2 rows
    

    更新数据

    相同的 record key 的数据会自动覆盖,通过 INSERT 相同 key 的数据可以实现数据更新:

    Flink SQL> insert into t2 values
    >   ('id1','Danny',24,TIMESTAMP '1970-01-01 00:00:01','par1'),
    >   ('id2','Stephen',34,TIMESTAMP '1970-01-01 00:00:02','par1');
    [INFO] Submitting SQL update statement to the cluster...
    [INFO] Table update statement has been successfully submitted to the cluster:
    Job ID: 944de5a1ecbb7eeb4d1e9e748174fe4c
    Flink SQL> select * from t2;
    +-----+----------------------+----------------------+-------------+-------------------------+----------------------+
    | +/- |                 uuid |                 name |         age |                      ts |            partition |
    +-----+----------------------+----------------------+-------------+-------------------------+----------------------+
    |   + |                  id1 |                Danny |          24 |     1970-01-01T00:00:01 |                 par1 |
    |   + |                  id2 |              Stephen |          34 |     1970-01-01T00:00:02 |                 par1 |
    |   + |                  id3 |               Julian |          53 |     1970-01-01T00:00:03 |                 par2 |
    |   + |                  id4 |               Fabian |          31 |     1970-01-01T00:00:04 |                 par2 |
    |   + |                  id5 |               Sophia |          18 |     1970-01-01T00:00:05 |                 par3 |
    |   + |                  id6 |                 Emma |          20 |     1970-01-01T00:00:06 |                 par3 |
    |   + |                  id7 |                  Bob |          44 |     1970-01-01T00:00:07 |                 par4 |
    |   + |                  id8 |                  Han |          56 |     1970-01-01T00:00:08 |                 par4 |
    +-----+----------------------+----------------------+-------------+-------------------------+----------------------+
    Received a total of 8 rows
    

    可以看到 uuid 为 id1 和 id2 的数据 age 字段值发生了更新。

    再次 insert 新数据观察结果:

    Flink SQL> insert into t2 values
    >   ('id4','Fabian',32,TIMESTAMP '1970-01-01 00:00:04','par2'),
    >   ('id5','Sophia',19,TIMESTAMP '1970-01-01 00:00:05','par3');
    [INFO] Submitting SQL update statement to the cluster...
    [INFO] Table update statement has been successfully submitted to the cluster:
    Job ID: fdeb7fd9f08808e66d77220f43075720
    Flink SQL> select * from t2;
    +-----+----------------------+----------------------+-------------+-------------------------+----------------------+
    | +/- |                 uuid |                 name |         age |                      ts |            partition |
    +-----+----------------------+----------------------+-------------+-------------------------+----------------------+
    |   + |                  id5 |               Sophia |          19 |     1970-01-01T00:00:05 |                 par3 |
    |   + |                  id6 |                 Emma |          20 |     1970-01-01T00:00:06 |                 par3 |
    |   + |                  id3 |               Julian |          53 |     1970-01-01T00:00:03 |                 par2 |
    |   + |                  id4 |               Fabian |          32 |     1970-01-01T00:00:04 |                 par2 |
    |   + |                  id1 |                Danny |          24 |     1970-01-01T00:00:01 |                 par1 |
    |   + |                  id2 |              Stephen |          34 |     1970-01-01T00:00:02 |                 par1 |
    |   + |                  id7 |                  Bob |          44 |     1970-01-01T00:00:07 |                 par4 |
    |   + |                  id8 |                  Han |          56 |     1970-01-01T00:00:08 |                 par4 |
    +-----+----------------------+----------------------+-------------+-------------------------+----------------------+
    Received a total of 8 rows
    

    四、Streaming 读

    通过如下语句创建一张新的表并注入数据:

    Flink SQL> create table t1(
    >   uuid varchar(20),
    >   name varchar(10),
    >   age int,
    >   ts timestamp(3),
    >   `partition` varchar(20)
    > )
    > PARTITIONED BY (`partition`)
    > with (
    >   'connector' = 'hudi',
    >   'path' = 'oss://vvr-daily/hudi/t1',
    >   'table.type' = 'MERGE_ON_READ',
    >   'read.streaming.enabled' = 'true',
    >   'read.streaming.check-interval' = '4'
    > );
    [INFO] Table has been created.
    Flink SQL> insert into t1 values
    >   ('id1','Danny',23,TIMESTAMP '1970-01-01 00:00:01','par1'),
    >   ('id2','Stephen',33,TIMESTAMP '1970-01-01 00:00:02','par1'),
    >   ('id3','Julian',53,TIMESTAMP '1970-01-01 00:00:03','par2'),
    >   ('id4','Fabian',31,TIMESTAMP '1970-01-01 00:00:04','par2'),
    >   ('id5','Sophia',18,TIMESTAMP '1970-01-01 00:00:05','par3'),
    >   ('id6','Emma',20,TIMESTAMP '1970-01-01 00:00:06','par3'),
    >   ('id7','Bob',44,TIMESTAMP '1970-01-01 00:00:07','par4'),
    >   ('id8','Han',56,TIMESTAMP '1970-01-01 00:00:08','par4');
    [INFO] Submitting SQL update statement to the cluster...
    [INFO] Table update statement has been successfully submitted to the cluster:
    Job ID: 9e1dcd37fd0f8ca77534c30c7d87be2c
    

    这里将 table option read.streaming.enabled 设置为 true,表明通过 streaming 的方式读取表数据;opiton read.streaming.check-interval 指定了 source 监控新的 commits 的间隔为 4s;option table.type 设置表类型为 MERGE_ON_READ,目前只有 MERGE_ON_READ 表支持 streaming 读。

    以上操作发生在一个 terminal 中,我们称之为 terminal_1。

    从新的 terminal(我们称之为 terminal_2)再次启动 Sql Client,重新创建 t1 表并查询:

    Flink SQL> set execution.result-mode=tableau;
    [INFO] Session property has been set.
    Flink SQL> create table t1(
    >   uuid varchar(20),
    >   name varchar(10),
    >   age int,
    >   ts timestamp(3),
    >   `partition` varchar(20)
    > )
    > PARTITIONED BY (`partition`)
    > with (
    >   'connector' = 'hudi',
    >   'path' = 'oss://vvr-daily/hudi/t1',
    >   'table.type' = 'MERGE_ON_READ',
    >   'read.streaming.enabled' = 'true',
    >   'read.streaming.check-interval' = '4'
    > );
    [INFO] Table has been created.
    Flink SQL> select * from t1;
    2021-03-22 18:36:37,042 INFO  org.apache.hadoop.conf.Configuration.deprecation             [] - mapred.job.map.memory.mb is deprecated. Instead, use mapreduce.map.memory.mb
    +-----+----------------------+----------------------+-------------+-------------------------+----------------------+
    | +/- |                 uuid |                 name |         age |                      ts |            partition |
    +-----+----------------------+----------------------+-------------+-------------------------+----------------------+
    |   + |                  id2 |              Stephen |          33 |     1970-01-01T00:00:02 |                 par1 |
    |   + |                  id1 |                Danny |          23 |     1970-01-01T00:00:01 |                 par1 |
    |   + |                  id6 |                 Emma |          20 |     1970-01-01T00:00:06 |                 par3 |
    |   + |                  id5 |               Sophia |          18 |     1970-01-01T00:00:05 |                 par3 |
    |   + |                  id8 |                  Han |          56 |     1970-01-01T00:00:08 |                 par4 |
    |   + |                  id7 |                  Bob |          44 |     1970-01-01T00:00:07 |                 par4 |
    |   + |                  id4 |               Fabian |          31 |     1970-01-01T00:00:04 |                 par2 |
    |   + |                  id3 |               Julian |          53 |     1970-01-01T00:00:03 |                 par2 |
    

    回到 terminal_1,继续执行 batch mode 的 INSERT 操作:

    Flink SQL> insert into t1 values
    >   ('id1','Danny',27,TIMESTAMP '1970-01-01 00:00:01','par1');
    [INFO] Submitting SQL update statement to the cluster...
    [INFO] Table update statement has been successfully submitted to the cluster:
    Job ID: 2dad24e067b38bc48c3a8f84e793e08b
    

    几秒之后,观察 terminal_2 的输出多了一行:

    +-----+----------------------+----------------------+-------------+-------------------------+----------------------+
    | +/- |                 uuid |                 name |         age |                      ts |            partition |
    +-----+----------------------+----------------------+-------------+-------------------------+----------------------+
    |   + |                  id2 |              Stephen |          33 |     1970-01-01T00:00:02 |                 par1 |
    |   + |                  id1 |                Danny |          23 |     1970-01-01T00:00:01 |                 par1 |
    |   + |                  id6 |                 Emma |          20 |     1970-01-01T00:00:06 |                 par3 |
    |   + |                  id5 |               Sophia |          18 |     1970-01-01T00:00:05 |                 par3 |
    |   + |                  id8 |                  Han |          56 |     1970-01-01T00:00:08 |                 par4 |
    |   + |                  id7 |                  Bob |          44 |     1970-01-01T00:00:07 |                 par4 |
    |   + |                  id4 |               Fabian |          31 |     1970-01-01T00:00:04 |                 par2 |
    |   + |                  id3 |               Julian |          53 |     1970-01-01T00:00:03 |                 par2 |
    |   + |                  id1 |                Danny |          27 |     1970-01-01T00:00:01 |                 par1 |
    

    再次在 terminal_1 中执行 INSERT 操作:

    Flink SQL> insert into t1 values
    >   ('id4','Fabian',32,TIMESTAMP '1970-01-01 00:00:04','par2'),
    >   ('id5','Sophia',19,TIMESTAMP '1970-01-01 00:00:05','par3');
    [INFO] Submitting SQL update statement to the cluster...
    [INFO] Table update statement has been successfully submitted to the cluster:
    Job ID: ecafffda3d294a13b0a945feb9acc8a5
    

    观察 terminal_2 的输出变化:

    +-----+----------------------+----------------------+-------------+-------------------------+----------------------+
    | +/- |                 uuid |                 name |         age |                      ts |            partition |
    +-----+----------------------+----------------------+-------------+-------------------------+----------------------+
    |   + |                  id2 |              Stephen |          33 |     1970-01-01T00:00:02 |                 par1 |
    |   + |                  id1 |                Danny |          23 |     1970-01-01T00:00:01 |                 par1 |
    |   + |                  id6 |                 Emma |          20 |     1970-01-01T00:00:06 |                 par3 |
    |   + |                  id5 |               Sophia |          18 |     1970-01-01T00:00:05 |                 par3 |
    |   + |                  id8 |                  Han |          56 |     1970-01-01T00:00:08 |                 par4 |
    |   + |                  id7 |                  Bob |          44 |     1970-01-01T00:00:07 |                 par4 |
    |   + |                  id4 |               Fabian |          31 |     1970-01-01T00:00:04 |                 par2 |
    |   + |                  id3 |               Julian |          53 |     1970-01-01T00:00:03 |                 par2 |
    |   + |                  id1 |                Danny |          27 |     1970-01-01T00:00:01 |                 par1 |
    |   + |                  id5 |               Sophia |          19 |     1970-01-01T00:00:05 |                 par3 |
    |   + |                  id4 |               Fabian |          32 |     1970-01-01T00:00:04 |                 par2 |
    

    五、总结

    通过一些简单的演示,我们发现 HUDI Flink 的集成已经相对完善,读写路径均已覆盖,关于详细的配置,可以参考 Flink SQL Config Options[10]。

    Hudi 社区正在积极的推动和 Flink 的深度集成,包括但不限于:

    • Flink streaming reader 支持 watermark,实现数据湖/仓的中间计算层 pipeline
    • Flink 基于 Hudi 的物化视图,实现分钟级的增量视图,服务于线上的近实时查询

    注释:
    [1] https://www.alibabacloud.com/help/zh/product/70174.htm
    [2]https://aws.amazon.com/cn/emr/features/hudi/
    [3]https://www.uber.com/
    [4]http://www.slideshare.net/vinothchandar/hadoop-strata-talk-uber-your-hadoop-has-arrived/32
    [5]https://eng.uber.com/uber-big-data-platform/
    [6]https://issues.apache.org/jira/browse/HUDI-1521
    [7]https://ci.apache.org/projects/flink/flink-docs-stable/dev/table/sqlClient.html
    [8]https://flink.apache.org/downloads.html
    [9]https://repo.maven.apache.org/maven2/org/apache/hudi/hudi-flink-bundle_2.11/
    [10]https://hudi.apache.org/docs/configurations.html#flink-options

    相关文章

      网友评论

          本文标题:Hudi on Flink 快速上手指南

          本文链接:https://www.haomeiwen.com/subject/ivybhltx.html