美文网首页
Python 简单的扩音,音频去噪,静音剪切

Python 简单的扩音,音频去噪,静音剪切

作者: justlpf | 来源:发表于2021-07-02 16:48 被阅读0次

简介

扩音

音频去噪

静音剪切

基本概念

数字信号

数字信号是通过对连续的模拟信号采样得到的离散的函数。它可以简单看作一个以时间为下标的数组。比如,x[n],n为整数。比如下图是一个正弦信号(n=0,1, ..., 9):

对于任何的音频文件,实际上都是用这种存储方式,比如,下面是对应英文单词“skip”的一段信号(只不过由于点太多,笔者把点用直线连接了起来):

衡量数字信号的能量(强度),只要简单的求振幅平方和即可:

E = sum(x[n]*x[n])

频率

我们知道,声音可以看作是不同频率的正弦信号叠加。那么给定一个声音信号(如上图),怎么能够知道这个信号在不同频率区段上的强度呢?答案是使用离散傅里叶变换。对信号x[n], n=0, ..., N-1,通常记它的离散傅里叶变换为X[n],它是一个复值函数。

比如,对上述英文单词“skip”对应的信号做离散傅里叶变换,得到它在频域中的图像是:

可以看到能量主要集中在中低音部分(约16000Hz以下)。

在频域上,也可以计算信号的强度,因为根据Plancherel定理,有:

E = sum(x[n]*x[n]) = 1/N*sum(|X[n]|*|X[n]|)

分帧

对于一般的语音信号,长度都至少在1秒以上,有时候我们需要把其中比如25毫秒的一小部分单独拿出来研究。将一个信号依次取小段的操作,就称作分帧。技术上,音频分帧是通过给信号加一系列的函数实现的。

我们把一种特殊的函数w[n],称作窗函数,如果对所有的n,有0<=w[n]<=1,且只有有限个n使得w[n]>0。比如去噪要用到的汉宁窗,三角窗。

汉宁窗

三角窗

我们将平移的窗函数与原始信号相乘,便得到信号的“一帧”:

w[n+d]*x[n]

比如用长22.6毫秒的汉宁窗加到“skip”信号大约中间部位上,得到一帧的信号:

可见除一有限区间之外,加窗后的信号其他部分都是0。

对一帧信号可以施加离散傅里叶变换(也叫短时离散傅里叶变换),来获取信号在这一帧内(通常是很短时间内),有关频率-能量的分布信息。

如果我们把信号按照上述方法分成一帧一帧,又将每一帧用离散傅里叶变换转换到频域中去,最后将各帧在频域的图像拼接起来,用横坐标代表时间,纵坐标代表频率,颜色代表能量强度(比如红色代表高能,蓝色代表低能),那么我们就构造出所谓频谱图。比如上述“skip”发音对应的信号的频谱图是:

(使用5.8毫秒的汉宁窗)

从若干帧信号中,我们又可以恢复出原始信号。只要我们适当选取窗口大小,以及窗口之间的平移距离L,得到 ..., w[n+2L], w[n+L], w[n], w[n-L], w[n-2L], ...,使得对k求和有:

sum(w[n+kL]) = 1

从而简单的叠加各帧信号便可以恢复出原始信号:

sum(x[n]*w[n+kL]) = x[n]

最后,注意窗函数也可以在频域作用到信号上,从而可以起到取出信号的某一频段的作用。

下面简单介绍一下3种音效。

1. 扩音

要扩大信号的强度,只要简单的增大信号的“振幅”。比如给定一个信号x[n],用a>1去乘,便得到声音更大的增强信号:

a*x[n]

同理,用系数0<a<1去乘,便得到声音变小的减弱信号。

2. 去噪(降噪)

对于白噪音,我们可以简单的用“移动平均滤波器”来去除,虽然这也会一定程度降低声音的强度,但效果的确不错。但是,对于成分较为复杂,特别是频段能量分布不均匀的噪声,则需要使用下面的噪声门技术,它可以看作是一种“多带通滤波器”。

这个特效的基本思路是:对一段噪声样本建模,然后降低待降噪信号中噪声的分贝。

更加细节的说,是在信号的若干频段f[1], ..., f[M]上,分别设置噪声门g[1], ..., g[M],每个门都有一个对应的阈值,分别是t[1], ..., t[M]。这些阈值时根据噪声样本确定的。比如当通过门g[m]的信号强度超过阈值t[m]时,门就会关闭,反之,则会重新打开。最后通过的信号便会只保留下来比噪声强度更大的声音,通常也就是我们想要的声音。

为了避免噪声门的开合造成信号的剧烈变动,笔者使用了sigmoid函数做平滑处理,即噪声门在开-关2个状态之间是连续变化的,信号通过的比率也是在1.0-0.0之间均匀变化的。

实现中,我们用汉宁窗对信号进行分帧。然后对每一帧,又用三角窗将信号分成若干频段。对噪声样本做这样的处理后,可以求出信号每一频段对应的阈值。然后,又对原始信号做这样的处理(分帧+分频),根据每一帧每一频段的信号强度和对应阈值的差(diff = energy-threshold),来计算对应噪声门的开合程度,即通过信号的强度。最后,简单的将各频段,各帧的通过信号叠加起来,便得到了降噪信号。

比如原先的“skip”语音信号频谱图如下:

可以看到有较多杂音(在高频,低频段,蓝色部分)。采集0.25秒之前的声音作为噪声样本,对信号作降噪处理,得到降噪后信号的频谱图如下:

可以明显的看到大部分噪音都被清除了,而语音部分仍完好无损,强度也没有减弱,这是“移动平均滤波器”所做不到的。

3. 静音剪切

在对音频进行上述降噪处理后,我们还可以进一步把多余的静音去除掉。

剪切的原理十分简单。首先用汉宁窗对信号做分帧。如果该帧信号强度过小,则舍去该帧。最后将保留的帧叠加起来,便得到了剪切掉静音部分的信号。

比如,对降噪处理后的“skip”语音信号做静音剪切,得到的新信号的频谱图为:

相关文章

  • Python 简单的扩音,音频去噪,静音剪切

    简介 扩音音频去噪静音剪切 基本概念 数字信号 数字信号是通过对连续的模拟信号采样得到的离散的函数。它可以简单看作...

  • 音频基础

    音频开发的具体内容有:(1)音频采集/播放(2)音频算法处理(去噪、静音检测、回声消除、音效处理、功放/增强、混音...

  • #Python#音频剪切

    原是想网上找个工具,剪切一段音频,没想免费工具都会自带加上一些类“水印”语音,只好用代码来剪切一下了 一、相关工具...

  • 图像去噪

    图像去噪可以分为固定阈值去噪和自适应阈值去噪 固定阈值去噪 opencv函数(python):cv2.thresh...

  • 音频剪切

    mp3格式音频剪切方法,此方法不涉及音频解码格式转换等流程,只针对文件长度做裁剪。 public static S...

  • iOS 录音、音频的拼接剪切以及边录边压缩转码

    iOS 录音、音频的拼接剪切以及边录边压缩转码 iOS 录音、音频的拼接剪切以及边录边压缩转码

  • 音频去噪与均衡器

    一. 前言 从接触音视频这行开始,就会时不时在资料查找过程中看到许多关于频域分析的文章,奈何自己大学没有好好学习信...

  • Easy Audio Mixer 2.0 for Mac 共享版

    下载地址:风云社区 Easy Audio Mixer是一种简单的音频编辑器工具,易于使用。您可以使用它来剪切音频,...

  • Mac 最简单的音频剪切和合并

    工具有三: QuickTime Player(Mac 自带):用于剪切歌曲成MOV Music Converter...

  • H5 video标签自动播放无效?

    自动播放无效 加上 muted 属性 muted 属性用来表示网页中的音频是否静音,如果设置,音频将被初始化为静音

网友评论

      本文标题:Python 简单的扩音,音频去噪,静音剪切

      本文链接:https://www.haomeiwen.com/subject/ixfyultx.html