位运算

作者: 柚丸 | 来源:发表于2018-11-19 19:37 被阅读22次

位运算

一. 操作符

符号 描述 运算规则
& 两个位都为1时,结果才为1
| 两个位都为0时,结果才为0
^ 异或 两个位相同都为0,相异为1
~ 取反 0变1,1变0
<< 左移 各位全部左移若干位,高位丢弃,低位补0
>> 右移 各二进位全部右移若干位,对无符号数,高位补0,有符号数,各编译器处理方法不一样,有的补符号位(算术右移),有的补0(逻辑右移)

二. 进制转换

1. 二、八、十六进制转十进制(按位计数法)

e.g.

0B11010101转十进制
\begin{split} 0B\qquad \qquad 1\qquad \qquad 1\qquad \qquad 0\qquad \qquad 1\qquad \qquad 0\qquad \qquad 1\qquad \qquad 0\qquad \qquad 1 \qquad \\ = (1 \times 2^7) + (1 \times 2^6) + (0 \times2^5) + (1 \times 2^4) + (0 \times 2^3) + (1 \times 2^2) + (0 \times 2^1) + (1 \times 2^0) \\ = 213 \end{split}

2. 十进制转二、八、十六进制(除r取余,逆序排列)

e.g.
761转二进制
\begin{split} 761 \div 2 = 380...1 \\ 380 \div 2 = 190...0 \\ 190 \div 2 = 95 ...0 \\ 95 \div 2 = 47...1 \\ 47 \div 2 = 23...1 \\ 23 \div 2 = 11...1 \\ 11 \div 2 = 5...1 \\ 5 \div 2 = 2...1 \\ 2 \div 2 = 1...0 \\ 1 \div 2 = 0...1 \end{split}
最后得到二进制数1011111001。

3. 二进制转八、十六进制(取三、四合一法)

e.g.
11 010 转八进制
第一步:高位补0
011 010
第二步:每三位对应成八进制数
32

4. 八、十六进制转二进制(取一分三、四法)

e.g.
3b转二进制
第一步:3 = 0011,b = 1011
第二步:拼接
0011 1011

三. 常用位运算小技巧

1. 判断奇偶

根据二进制数的末尾,0为偶数,1为奇数。

所以 n & 1 == 0 , 或者 n | 0 == 0 时,为偶数。

2. 在不引入第三方变量的情况下交换两数

a ^= b;
// a = a ^ b            ①式
b ^= a;
// b = b ^ a
//   = b ^ (a ^ b)      ②式
//   = b ^ b ^ a
//   = 0 ^ a
//   = a
a ^= b;
// 解法1:
// a = a ^ b
//   = (a ^ b) ^ a  // 带入①式,并且第二步中b已经转换为a
//   = b
// 解法2:
// a = a ^ b
//   = (a ^ b) ^ (b ^ a ^ b)  // 带入①式和②式
//   = (a ^ a) ^ (b ^ b) ^ b
//   = 0 ^ 0 ^ b
//   = b

3. 交换符号

取反+1

理解:

负数转正数:负数的补码转源码,除符号位取反加一,变成负数的源码。所以负数取反加一就是符号位一起取反,变成正数的源码,也就是正数的补码。

正数转负数:正数的符号位取反变成负数的源码,负数除符号位取反加一,变成负数的补码;

SignedByte a = 0b00001011;
SignedByte b = 0b11110101;
NSLog(@"a = %d, b = %d", a, b);

3. 求绝对值

正数返回本身,负数返回取反+1

/** 求绝对值 */
- (int)abs:(int)num {
    int absNum;
    // 获取符号位,比如int为4字节,32位,右移31位获取符号位
    int bits = sizeof(int) * 8 - 1;
    // 符号位为0代表是整数,反之是负数,取反加一得到正数
    absNum = ((num >> bits) & 1) == 0 ? num : ~num + 1;
    return absNum;
}

四. 四则运算

1. 加法

加法可以分解成求'和'、'进位'两个部分,'和'要留在当前位,'进位'要加到下一位。

二进制的加法有两个特点:

  1. 位的异或运算和求'和'的结果一致

    异或 1 ^ 1 = 0 1 ^ 0 = 1   0 ^ 0 = 0
    求和 1 + 1 = 0 1 + 0 = 1   0 + 0 = 0
    
  2. 位的与运算跟求'进位'的结果一致

    位与 1 & 1 = 1 1 & 0 = 0   0 & 0 = 0
    进位 1 + 1 = 1 1 + 0 = 0   0 + 0 = 0
    

1.1 二进制个位数加法

/** 二进制个位数加法 */
- (int)addA:(int)a andB:(int)b {
    // 记录求和
    int sum = a ^ b;
    // 记录进位
    int carry = (a & b) << 1;
    // 位运算,实现各位求和
    return sum ^ carry;
}

1.2 二进制多位数加法

非递归:

/** 二进制多位数加法,非递归 */
- (int)addA:(int)a andB:(int)b {
    int sum, carry;
    // 保证加数为0,相加不存在进位,此时的异或就是真正的求和
    while (b != 0) {
        // 记录下各位的求和
        sum = a ^ b;
        // 记录下各位的进位
        carry = (a & b) << 1;
        // 求和赋值为被加数
        a = sum;
        // 进位赋值为加数
        b = carry;
    }
    return a;
}

递归:

/** 二进制多位数加法,递归 */
- (int)addA:(int)a andB:(int)b {
    // 判断递归终止条件
    if (b == 0) {
        // 当进位为0时,求和就是两数的和
        return a;
    }
    // 记录下各位的求和
    int sum = a ^ b;
    // 记录下各位的进位
    int carry = (a & b) << 1;
    // 调用当前函数
    return [self addA:sum andB:carry];
}

2. 减法

减去一个数等于加上这个数的负数。

/** 二进制多位数减法 */
- (int)a:(int)a minusB:(int)b {
    return [self addA:a andB:~b + 1];
}

3. 乘法

axb相乘等于b个a相加

/** 两数相乘 */
- (int)multiplyA:(int)a andB:(int)b {
    // 乘积
    int product = 0;
    // 两数相乘的结果是否为负数
    BOOL isNegativeNum = NO;
    
    // 判断两数相乘的结果是否为负数
    if ([self isNegativeNumber:a]) {
        isNegativeNum = !isNegativeNum;
    }
    if ([self isNegativeNumber:b]) {
        isNegativeNum = !isNegativeNum;
    }
    
    // 求和,b个a相加
    for (int i = 0; i < [self abs:b]; i++) {
        product = [self addA:product andB:[self abs:a]];
    }
    
    // 如果乘积结果是负数,乘积取反
    if (isNegativeNum) {
        product = [self addA:~product andB:1];
    }
    
    return product;
}

/** 获取该数的绝对值 */
- (int)abs:(int)num {
    int absNum;
    // 负数取反,正数返回本身
    absNum = [self isNegativeNumber:num] ? [self addA:~num andB:1] : num;
    return absNum;
}

/** 判断该数字是否为负数 */
- (BOOL)isNegativeNumber:(int)num {
    // 获取右移位数,比如int为4字节,32位,右移31位获取符号位
    int bits = 31;
    // 获取符号位,符号位为1代表负数,反之为正数
    BOOL isNegativeNumber = ((num >> bits) & 1) == 1 ? YES : NO;
    return isNegativeNumber;
}

4. 除法

被除数除以除数,相当于被除数一直减去除数,直到不够减为止,做减法的次数就是商。

/** 除法 */
- (int)divideA:(int)a byB:(int)b {
    
    // 被除数和除数的赋值
    int dividend = a;
    int divisor = b;
    // 商,即做减法的次数
    int times = 0;
    // 两数相除的结果是否为负数
    BOOL isNegativeNum = NO;
    
    // 判断两数相除的结果是否为负数
    if ([self isNegativeNumber:dividend]) {
        isNegativeNum = !isNegativeNum;
    }
    if ([self isNegativeNumber:divisor]) {
        isNegativeNum = !isNegativeNum;
    }
    
    // 当被除数小于除数时,代表不够除了
    while (dividend > 0 && [self abs:dividend] >= [self abs:divisor]) {
        int negativeNum = divisor < 0 ? divisor : [self addA:~divisor andB:1];
        dividend = [self addA:[self abs:dividend] andB:negativeNum];
        times++;
    }
    
    // 商为负数的话取反
    if (isNegativeNum) {
        times = [self addA:~times andB:1];
    }
    
    return times;
}

相关文章

  • 3、小众运算符の大课堂(一)

    较为简单の位运算符: & 位与运算| 位或运算^ 位异或运算~ 位取反运算 举例: 要做位运算,首先要把数据转...

  • 位运算及其应用

    内容概要: 位运算基本操作 基于位运算的状态压缩 位运算经典应用 位运算解N皇后问题 位运算 符号描述规则&与1&...

  • 位运算及用位运算实现权限控制

    请自行补习位运算相关知识 位运算 位运算示例 权限控制

  • 开发基础随笔之位运算符(Bitwise Operators)

    位运算符,属于算术运算符 按位逻辑运算符: 位移运算符: 位运算符的运算数只能是整数 位移运算符:按位左移 a<<...

  • 强大的位运算符

    位取反运算符 位取反运算符(~)是对所有位的数字进行取反操作位取反运算符.png 位与运算符 位与运算符(&)可以...

  • 位运算

    位运算 1. &:按位与 规律:一假则假任何位上的数和1相&得到的结果还是那个数 2. |:按位或 规律:一真则真...

  • 位运算

    https://leetcode.com/problems/gray-code/description/这个位运算...

  • 位运算

    位运算符比一般的算术运算符速度要快,而且可以实现一些算术运算符不能实现的功能。如果要开发高效率程序,位运算符是必不...

  • 位运算

    1.不用加减乘除做加法 解法:分为三步①各位相加不进位,即先按位异或;②做进位,按位与并左移位;③结果相加,直至没...

  • 位运算

    位运算不仅可以简化某些复杂的操作,而且具有更快的计算速度。典型的应用就是除法,交换两个数值,以及在一个数组中寻找只...

网友评论

    本文标题:位运算

    本文链接:https://www.haomeiwen.com/subject/ixoafqtx.html