美文网首页
决策树(一)

决策树(一)

作者: AlexDM | 来源:发表于2020-03-07 16:40 被阅读0次
大草原
# 书上题目5.1
def create_data():
    datasets = [['青年', '否', '否', '一般', '否'],
               ['青年', '否', '否', '好', '否'],
               ['青年', '是', '否', '好', '是'],
               ['青年', '是', '是', '一般', '是'],
               ['青年', '否', '否', '一般', '否'],
               ['中年', '否', '否', '一般', '否'],
               ['中年', '否', '否', '好', '否'],
               ['中年', '是', '是', '好', '是'],
               ['中年', '否', '是', '非常好', '是'],
               ['中年', '否', '是', '非常好', '是'],
               ['老年', '否', '是', '非常好', '是'],
               ['老年', '否', '是', '好', '是'],
               ['老年', '是', '否', '好', '是'],
               ['老年', '是', '否', '非常好', '是'],
               ['老年', '否', '否', '一般', '否'],
               ]
    labels = [u'年龄', u'有工作', u'有自己的房子', u'信贷情况', u'类别']
    # 返回数据集和每个维度的名称
    return datasets, labels

datasets, labels = create_data()
train_data = pd.DataFrame(datasets, columns=labels)
# 熵
def calc_ent(datasets):
    data_length = len(datasets)
    label_count = {}
    for i in range(data_length):
        label = datasets[i][-1]
        if label not in label_count:
            label_count[label] = 0
        label_count[label] += 1
    ent = -sum([(p / data_length) * log(p / data_length, 2)
                for p in label_count.values()])
    return ent
# def entropy(y):
#     """
#     Entropy of a label sequence
#     """
#     hist = np.bincount(y)
#     ps = hist / np.sum(hist)
#     return -np.sum([p * np.log2(p) for p in ps if p > 0])


# 经验条件熵,单个特征的
def cond_ent(datasets, axis=0):
    data_length = len(datasets)
    feature_sets = {}
    for i in range(data_length):
        feature = datasets[i][axis]
        # 对特征的可能取值进行分类,分别存入
        if feature not in feature_sets:
            feature_sets[feature] = []
        feature_sets[feature].append(datasets[i])
    cond_ent = sum(
        [(len(p) / data_length) * calc_ent(p) for p in feature_sets.values()])
    return cond_ent


# 信息增益
def info_gain(ent, cond_ent):
    return ent - cond_ent

# 计算每个特征的信息增益,得到最大增益的特征
def info_gain_train(datasets):
    count = len(datasets[0]) - 1
    ent = calc_ent(datasets)
#     ent = entropy(datasets)
    best_feature = []
    for c in range(count):
        c_info_gain = info_gain(ent, cond_ent(datasets, axis=c))
        best_feature.append((c, c_info_gain))
        print('特征({}) - info_gain - {:.3f}'.format(labels[c], c_info_gain))
    # 按增益大小进行比较
    best_ = max(best_feature, key=lambda x: x[-1])
    return '特征({})的信息增益最大,选择为根节点特征'.format(labels[best_[0]])
# 定义节点类 二叉树
class Node:
# 初始化实例,并定义属性
    def __init__(self, root=True, label=None, feature_name=None, feature=None):
        self.root = root
        self.label = label
        self.feature_name = feature_name
        self.feature = feature
        self.tree = {}
        self.result = {
            'label:': self.label,
            'feature': self.feature,
            'tree': self.tree
        }

# 特殊的输出方法
    def __repr__(self):
        return '{}'.format(self.result)

    def add_node(self, val, node):
        self.tree[val] = node

    def predict(self, features):
        if self.root is True:
            return self.label
        return self.tree[features[self.feature]].predict(features)


class DTree:
    def __init__(self, epsilon=0.1):
        self.epsilon = epsilon
        self._tree = {}

    # 熵
    @staticmethod
    def calc_ent(datasets):
        data_length = len(datasets)
        label_count = {}
        for i in range(data_length):
            label = datasets[i][-1]
            if label not in label_count:
                label_count[label] = 0
            label_count[label] += 1
        ent = -sum([(p / data_length) * log(p / data_length, 2)
                    for p in label_count.values()])
        return ent

    # 经验条件熵
    def cond_ent(self, datasets, axis=0):
        data_length = len(datasets)
        feature_sets = {}
        for i in range(data_length):
            feature = datasets[i][axis]
            if feature not in feature_sets:
                feature_sets[feature] = []
            feature_sets[feature].append(datasets[i])
        cond_ent = sum([(len(p) / data_length) * self.calc_ent(p)
                        for p in feature_sets.values()])
        return cond_ent

    # 信息增益
    @staticmethod
    def info_gain(ent, cond_ent):
        return ent - cond_ent

    def info_gain_train(self, datasets):
        count = len(datasets[0]) - 1
        ent = self.calc_ent(datasets)
        best_feature = []
        for c in range(count):
            c_info_gain = self.info_gain(ent, self.cond_ent(datasets, axis=c))
            best_feature.append((c, c_info_gain))
        # 比较大小
        best_ = max(best_feature, key=lambda x: x[-1])
        return best_

    def train(self, train_data):
        """
        input:数据集D(DataFrame格式),特征集A,阈值eta
        output:决策树T
        """
        _, y_train, features = train_data.iloc[:, :-1], train_data.iloc[:,-1], train_data.columns[:-1]
        # 1,若D中实例属于同一类Ck,则T为单节点树,并将类Ck作为结点的类标记,返回T
        if len(y_train.value_counts()) == 1:
            return Node(root=True, label=y_train.iloc[0])

        # 2, 若A为空,则T为单节点树,将D中实例树最大的类Ck作为该节点的类标记,返回T
        if len(features) == 0:
            return Node(
                root=True,
                label=y_train.value_counts().sort_values(
                    ascending=False).index[0])

        # 3,计算最大信息增益 同5.1,Ag为信息增益最大的特征
        max_feature, max_info_gain = self.info_gain_train(np.array(train_data))
        max_feature_name = features[max_feature]

        # 4,Ag的信息增益小于阈值eta,则置T为单节点树,并将D中是实例数最大的类Ck作为该节点的类标记,返回T
        if max_info_gain < self.epsilon:
            return Node(
                root=True,
                label=y_train.value_counts().sort_values(
                    ascending=False).index[0])

        # 5,构建Ag子集
        node_tree = Node(
            root=False, feature_name=max_feature_name, feature=max_feature)

        feature_list = train_data[max_feature_name].value_counts().index
        for f in feature_list:
            sub_train_df = train_data.loc[train_data[max_feature_name] ==
                                          f].drop([max_feature_name], axis=1)

            # 6, 递归生成树
            sub_tree = self.train(sub_train_df)
            node_tree.add_node(f, sub_tree)

        # pprint.pprint(node_tree.tree)
        return node_tree

    def fit(self, train_data):
        self._tree = self.train(train_data)
        return self._tree

    def predict(self, X_test):
        return self._tree.predict(X_test)

复现经典:《统计学习方法》第 5 章 决策树
微信号:机器学习初学者
https://mp.weixin.qq.com/s?__biz=MzIwODI2NDkxNQ==&mid=2247485937&idx=8&sn=47dd258455a33ea9162a8a5cdf89a902&chksm=9704824da0730b5b4506ea0645f858544c9bcfc24e5e799eef5805445ab91d5e8688ef11ee18&scene=21#wechat_redirect

相关文章

  • 机器学习6-决策树

    一. 决策树概述 1.1 什么是决策树 决策树输入: 测试集决策树输出: 分类规则(决策树) 1.2 决策树算法概...

  • 决策树算法总结

    目录 一、决策树算法思想 二、决策树学习本质 三、总结 一、决策树(decision tree)算法思想: 决策树...

  • 机器学习 - 决策树算法[一]

    1 决策树模型与学习 1.1 决策树模型 决策树定义: 分类决策树模型是一种描述对实例进行分类的树形结构。决策树由...

  • 经典机器学习系列之【决策树详解】

      这节我们来讲说一下决策树。介绍一下决策树的基础知识、决策树的基本算法、决策树中的问题以及决策树的理解和解释。 ...

  • 决策树

    1、决策树 决策树学习通常包括3个步骤: 特征选择。 决策树生成。 决策树剪枝。 决策树的学习目标是:根据给定的训...

  • 决策树

    决策树 决策树模型与学习 特征选择 决策树的生成 决策树的剪枝 CART 算法 决策树模型呈树形结构,在分类问题中...

  • 第5章 决策树

    内容 一、决策树内容简介 二、决策树的模型与学习 三、特征选择 四、决策树生成 五、决策树剪枝 六、CART算法 ...

  • 机器学习系列(三十六)——回归决策树与决策树总结

    本篇主要内容:回归决策树原理、回归树学习曲线、决策树总结 回归决策树原理 回归决策树树是用于回归的决策树模型,回归...

  • [机器学习]决策树

    决策树 @(技术博客)[机器学习, 决策树, python] 学习决策树首先要搞清楚决策树是什么(what),在弄...

  • 相亲可以用决策树?

    2019年日更第225天 决策、管理、思考 01决策树:如何用决策树来选择相亲对象 什么是决策树?决策树就是一种把...

网友评论

      本文标题:决策树(一)

      本文链接:https://www.haomeiwen.com/subject/iyvcdhtx.html