源代码
mnist_deep.py的网络结构定义如下
def deepnn(x):
"""deepnn builds the graph for a deep net for classifying digits.
Args:
x: an input tensor with the dimensions (N_examples, 784), where 784 is the
number of pixels in a standard MNIST image.
Returns:
A tuple (y, keep_prob). y is a tensor of shape (N_examples, 10), with values
equal to the logits of classifying the digit into one of 10 classes (the
digits 0-9). keep_prob is a scalar placeholder for the probability of
dropout.
"""
# Reshape to use within a convolutional neural net.
# Last dimension is for "features" - there is only one here, since images are
# grayscale -- it would be 3 for an RGB image, 4 for RGBA, etc.
with tf.name_scope('reshape'):
x_image = tf.reshape(x, [-1, 28, 28, 1])
# First convolutional layer - maps one grayscale image to 32 feature maps.
with tf.name_scope('conv1'):
W_conv1 = weight_variable([5, 5, 1, 32])
b_conv1 = bias_variable([32])
h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
# Pooling layer - downsamples by 2X.
with tf.name_scope('pool1'):
h_pool1 = max_pool_2x2(h_conv1)
# Second convolutional layer -- maps 32 feature maps to 64.
with tf.name_scope('conv2'):
W_conv2 = weight_variable([5, 5, 32, 64])
b_conv2 = bias_variable([64])
h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
# Second pooling layer.
with tf.name_scope('pool2'):
h_pool2 = max_pool_2x2(h_conv2)
# Fully connected layer 1 -- after 2 round of downsampling, our 28x28 image
# is down to 7x7x64 feature maps -- maps this to 1024 features.
with tf.name_scope('fc1'):
W_fc1 = weight_variable([7 * 7 * 64, 1024])
b_fc1 = bias_variable([1024])
h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)
# Dropout - controls the complexity of the model, prevents co-adaptation of
# features.
with tf.name_scope('dropout'):
keep_prob = tf.placeholder(tf.float32)
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)
# Map the 1024 features to 10 classes, one for each digit
with tf.name_scope('fc2'):
W_fc2 = weight_variable([1024, 10])
b_fc2 = bias_variable([10])
y_conv = tf.matmul(h_fc1_drop, W_fc2) + b_fc2
return y_conv, keep_prob
其中几乎每一层,都包含
with tf.name_scope('reshape'):
x_image = tf.reshape(x, [-1, 28, 28, 1])
语句。下面来仔细探究下tf.name_scope('reshape')的作用。
解析之 tf.name_scope('reshape')
在TensorFlow中,每一个定义的变量实际上是有名字(name)的。
例如: 代码
import tensorflow as tf
var1 = tf.Variable(tf.zeros([784,10]))
print(var1.name) #输出为 Variable:0
这段代码的输出为'Variable:0'
即为变量var1的名字(var1.name),这个名字是系统默认分配的。
也可以在创建变量时,自己给定变量名,即:
import tensorflow as tf
var1 = tf.Variable(name = 'var1', initial_value = tf.zeros([784,10]))
print(var1.name) #输出为 var1:0
这时代码的输出为自己指定的名字'var1:0'
而使用tf.name_scope('reshape')
命令,可以指定一段代码中所有变量的名称前缀。
例如
with tf.name_scope("reshape"):
var1 = tf.Variable(name = 'var1', initial_value = tf.zeros([784,10]))
print(var1.name) #输出为 reshape/var1:0
这时,输出变成了'reshape/var1:0'
。也就是说,tf.name_scope('reshape')
命令,在var1的名字前面加上了当前命名空间的名字 'reshape'
。
所以说代码中加入的with tf.name_scope('reshape'):
是为了命名的直观考虑的
也即是说,代码
x = tf.placeholder(tf.float32, [None, 784])
with tf.name_scope('reshape'):
x_image = tf.reshape(x, [-1, 28, 28, 1])
# First convolutional layer - maps one grayscale image to 32 feature maps.
with tf.name_scope('conv1'):
W_conv1 = weight_variable([5, 5, 1, 32])
b_conv1 = bias_variable([32])
h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
# Pooling layer - downsamples by 2X.
with tf.name_scope('pool1'):
h_pool1 = max_pool_2x2(h_conv1)
# Second convolutional layer -- maps 32 feature maps to 64.
with tf.name_scope('conv2'):
W_conv2 = weight_variable([5, 5, 32, 64])
b_conv2 = bias_variable([64])
h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
# Second pooling layer.
with tf.name_scope('pool2'):
h_pool2 = max_pool_2x2(h_conv2)
print(x_image.name)
print(W_conv1.name)
print(b_conv1.name)
print(h_pool2.name)
print(W_conv2.name)
print(b_conv2.name)
print(h_pool2.name)
的输出是
reshape/Reshape:0
conv1/Variable:0
conv1/Variable_1:0
conv1/Relu:0
pool2/MaxPool:0
conv2/Variable:0
conv2/Variable_1:0
conv2/Relu:0
pool2/MaxPool:0
而如果不加上with tf.name_scope('reshape'):
,也即代码
import tensorflow as tf
from mnist_deep import *
x = tf.placeholder(tf.float32, [None, 784])
x_image = tf.reshape(x, [-1, 28, 28, 1])
# First convolutional layer - maps one grayscale image to 32 feature maps.
W_conv1 = weight_variable([5, 5, 1, 32])
b_conv1 = bias_variable([32])
h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
# Pooling layer - downsamples by 2X.
h_pool1 = max_pool_2x2(h_conv1)
# Second convolutional layer -- maps 32 feature maps to 64.
W_conv2 = weight_variable([5, 5, 32, 64])
b_conv2 = bias_variable([64])
h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
# Second pooling layer.
h_pool2 = max_pool_2x2(h_conv2)
print(x_image.name)
print(W_conv1.name)
print(b_conv1.name)
print(h_conv1.name)
print(h_pool2.name)
print(W_conv2.name)
print(b_conv2.name)
print(h_conv2.name)
print(h_pool2.name)
的输出将是
Reshape:0
Variable:0
Variable_1:0
Relu:0
MaxPool_1:0
Variable_2:0
Variable_3:0
Relu_1:0
MaxPool_1:0
一团糟是吧,那个变量是干啥的不好分清楚。
网友评论