美文网首页
TensorFlow学习之 mnist_deep.py

TensorFlow学习之 mnist_deep.py

作者: shiguang116 | 来源:发表于2017-11-02 22:01 被阅读0次

    源代码

    mnist_deep.py的网络结构定义如下

    def deepnn(x):
      """deepnn builds the graph for a deep net for classifying digits.
    
      Args:
        x: an input tensor with the dimensions (N_examples, 784), where 784 is the
        number of pixels in a standard MNIST image.
    
      Returns:
        A tuple (y, keep_prob). y is a tensor of shape (N_examples, 10), with values
        equal to the logits of classifying the digit into one of 10 classes (the
        digits 0-9). keep_prob is a scalar placeholder for the probability of
        dropout.
      """
      # Reshape to use within a convolutional neural net.
      # Last dimension is for "features" - there is only one here, since images are
      # grayscale -- it would be 3 for an RGB image, 4 for RGBA, etc.
      with tf.name_scope('reshape'):
        x_image = tf.reshape(x, [-1, 28, 28, 1])
    
      # First convolutional layer - maps one grayscale image to 32 feature maps.
      with tf.name_scope('conv1'):
        W_conv1 = weight_variable([5, 5, 1, 32])
        b_conv1 = bias_variable([32])
        h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
    
      # Pooling layer - downsamples by 2X.
      with tf.name_scope('pool1'):
        h_pool1 = max_pool_2x2(h_conv1)
    
      # Second convolutional layer -- maps 32 feature maps to 64.
      with tf.name_scope('conv2'):
        W_conv2 = weight_variable([5, 5, 32, 64])
        b_conv2 = bias_variable([64])
        h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
    
      # Second pooling layer.
      with tf.name_scope('pool2'):
        h_pool2 = max_pool_2x2(h_conv2)
    
      # Fully connected layer 1 -- after 2 round of downsampling, our 28x28 image
      # is down to 7x7x64 feature maps -- maps this to 1024 features.
      with tf.name_scope('fc1'):
        W_fc1 = weight_variable([7 * 7 * 64, 1024])
        b_fc1 = bias_variable([1024])
    
        h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])
        h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)
    
      # Dropout - controls the complexity of the model, prevents co-adaptation of
      # features.
      with tf.name_scope('dropout'):
        keep_prob = tf.placeholder(tf.float32)
        h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)
    
      # Map the 1024 features to 10 classes, one for each digit
      with tf.name_scope('fc2'):
        W_fc2 = weight_variable([1024, 10])
        b_fc2 = bias_variable([10])
    
        y_conv = tf.matmul(h_fc1_drop, W_fc2) + b_fc2
      return y_conv, keep_prob
    

    其中几乎每一层,都包含

      with tf.name_scope('reshape'):
        x_image = tf.reshape(x, [-1, 28, 28, 1])
    

    语句。下面来仔细探究下tf.name_scope('reshape')的作用。

    解析之 tf.name_scope('reshape')

    在TensorFlow中,每一个定义的变量实际上是有名字(name)的。

    例如: 代码

    import tensorflow as tf
    var1 = tf.Variable(tf.zeros([784,10]))
    print(var1.name) #输出为 Variable:0
    

    这段代码的输出为'Variable:0'即为变量var1的名字(var1.name),这个名字是系统默认分配的。

    也可以在创建变量时,自己给定变量名,即:

    import tensorflow as tf
    var1 = tf.Variable(name = 'var1', initial_value = tf.zeros([784,10]))
    print(var1.name) #输出为 var1:0
    

    这时代码的输出为自己指定的名字'var1:0'

    而使用tf.name_scope('reshape')命令,可以指定一段代码中所有变量的名称前缀。

    例如

    with tf.name_scope("reshape"):
        var1 = tf.Variable(name = 'var1', initial_value = tf.zeros([784,10]))
        print(var1.name) #输出为 reshape/var1:0 
    

    这时,输出变成了'reshape/var1:0' 。也就是说,tf.name_scope('reshape') 命令,在var1的名字前面加上了当前命名空间的名字 'reshape'

    所以说代码中加入的with tf.name_scope('reshape'): 是为了命名的直观考虑的

    也即是说,代码

    x = tf.placeholder(tf.float32, [None, 784])
    with tf.name_scope('reshape'):
        x_image = tf.reshape(x, [-1, 28, 28, 1])
    
      # First convolutional layer - maps one grayscale image to 32 feature maps.
    with tf.name_scope('conv1'):
        W_conv1 = weight_variable([5, 5, 1, 32])
        b_conv1 = bias_variable([32])
        h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
    
      # Pooling layer - downsamples by 2X.
    with tf.name_scope('pool1'):
        h_pool1 = max_pool_2x2(h_conv1)
    
      # Second convolutional layer -- maps 32 feature maps to 64.
    with tf.name_scope('conv2'):
        W_conv2 = weight_variable([5, 5, 32, 64])
        b_conv2 = bias_variable([64])
        h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
    
      # Second pooling layer.
    with tf.name_scope('pool2'):
        h_pool2 = max_pool_2x2(h_conv2)
        
    print(x_image.name)
    print(W_conv1.name)
    print(b_conv1.name)
    print(h_pool2.name)
    print(W_conv2.name)
    print(b_conv2.name)
    print(h_pool2.name)
    

    的输出是

    reshape/Reshape:0
    conv1/Variable:0
    conv1/Variable_1:0
    conv1/Relu:0
    pool2/MaxPool:0
    conv2/Variable:0
    conv2/Variable_1:0
    conv2/Relu:0
    pool2/MaxPool:0
    

    而如果不加上with tf.name_scope('reshape'): ,也即代码

    import tensorflow as tf
    from mnist_deep import *
    x = tf.placeholder(tf.float32, [None, 784])
    
    x_image = tf.reshape(x, [-1, 28, 28, 1])
    
    # First convolutional layer - maps one grayscale image to 32 feature maps.
    W_conv1 = weight_variable([5, 5, 1, 32])
    b_conv1 = bias_variable([32])
    h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
    
      # Pooling layer - downsamples by 2X.
    h_pool1 = max_pool_2x2(h_conv1)
    
      # Second convolutional layer -- maps 32 feature maps to 64.
    W_conv2 = weight_variable([5, 5, 32, 64])
    b_conv2 = bias_variable([64])
    h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
    
      # Second pooling layer.
    h_pool2 = max_pool_2x2(h_conv2)
        
    print(x_image.name)
    print(W_conv1.name)
    print(b_conv1.name)
    print(h_conv1.name)
    print(h_pool2.name)
    print(W_conv2.name)
    print(b_conv2.name)
    print(h_conv2.name)
    print(h_pool2.name)
    

    的输出将是

    Reshape:0
    Variable:0
    Variable_1:0
    Relu:0
    MaxPool_1:0
    Variable_2:0
    Variable_3:0
    Relu_1:0
    MaxPool_1:0
    

    一团糟是吧,那个变量是干啥的不好分清楚。

    相关文章

      网友评论

          本文标题:TensorFlow学习之 mnist_deep.py

          本文链接:https://www.haomeiwen.com/subject/izoapxtx.html