MultiplicativeLR
torch.optim.lr_scheduler.MultiplicativeLR(optimizer, lr_lambda, last_epoch=-1, verbose=False)
设置学习率为上一次的学习率乘以给定lr_lambda函数的值
new_lr = lr_lambda(self.last_epoch) * last_lr
last_lr 最开始为base_lr
- optimizer:优化器
- lr_lambda:函数或者函数列表
- last_epoch:默认为-1,学习率更新计数;注意断点训练时last_epoch不为-1
例子
# -*- coding:utf-8 -*-
from __future__ import print_function
from __future__ import division
from __future__ import absolute_import
import torch
from torch.optim.lr_scheduler import MultiplicativeLR
import torch.optim as optim
import torch.nn as nn
import torch.nn.functional as F
import random
from torch.nn import CrossEntropyLoss
import matplotlib.pyplot as plt
"""上一次的学习率乘lambda1的函数值得到新的学习率"""
# 定义模型
class Net(nn.Module):
def __init__(self, n_feature, n_hidden, n_out):
super(Net, self).__init__()
self.hidden = nn.Linear(n_feature, n_hidden)
self.out = nn.Linear(n_hidden, n_out)
self.init_weights()
def init_weights(self):
initrange = 0.5
self.hidden.weight.data.uniform_(-initrange, initrange)
self.hidden.bias.data.zero_()
self.out.weight.data.uniform_(-initrange, initrange)
self.out.bias.data.zero_()
def forward(self, x, y=None):
x = self.hidden(x)
x = torch.sigmoid(x)
x = self.out(x)
out = F.log_softmax(x, dim=1)
loss = None
if y is not None:
loss_fct = CrossEntropyLoss()
loss = loss_fct(out, y)
return out, loss
# 构造数据
data_x = [torch.randn(32, 50)] * 16
data_y = [[1 if random.random() > 0.5 else 0 for j in range(32)]] * 16
# 模型
net = Net(n_feature=50, n_hidden=10, n_out=2)
# 优化器
optimizer = optim.Adam(net.parameters(), lr=1e-3)
# 学习率变化策略
lambda1 = lambda epoch: 0.95
# epoch仅仅是函数的自变量,代表scheduler.step()次数,与训练模型中的epoch不同
# lambda2 = lambda epoch: 0.95 ** epoch
# 如果有多组参数,可以设置不同的组使用不同的学习率变化策略
scheduler = MultiplicativeLR(optimizer, lr_lambda=lambda1, last_epoch=-1)
print(scheduler.base_lrs[0])
print(scheduler.get_lr()[0])
print(scheduler.last_epoch)
print("=====================================================================")
"""上一次的学习率乘lambda1的函数值得到新的学习率"""
# 画图
x_plot = []
y_plot = []
last_lr = optimizer.param_groups[0]["lr"]
for epoch in range(10):
for step, batch in enumerate(zip(data_x, data_y)):
x, y = batch
y = torch.tensor(y)
out, loss = net(x, y)
loss.backward()
optimizer.step()
optimizer.zero_grad()
scheduler.step()
x_plot.append(scheduler.last_epoch)
y_plot.append(scheduler.get_lr()[0])
print(lambda1(scheduler.last_epoch))
print(last_lr)
print(optimizer.param_groups[0]["lr"])
assert lambda1(scheduler.last_epoch) * last_lr == optimizer.param_groups[0]["lr"], "error"
last_lr = optimizer.param_groups[0]["lr"]
plt.plot(x_plot, y_plot, )
plt.savefig('./MultiplicativeLR.jpg')
在这里插入图片描述
网友评论