上篇我们在dyld分析分析中了解到在dyld启动过程是会调用objc的init方法,而该init方法中会往dyld中注册一个回调,在dyld后续流程中会调用该回调map_images。
类的读取
map_images中主要是调用map_images_nolock,而map_images_nolock主要流程是进行了一些初始化,以及最关键的把所有的在读取到内存中来(注意读取的类并未实现,其ro、rw数据还没有处理好)
void
map_images(unsigned count, const char * const paths[],
const struct mach_header * const mhdrs[])
{
mutex_locker_t lock(runtimeLock);
return map_images_nolock(count, paths, mhdrs);
}
void
map_images_nolock(unsigned mhCount, const char * const mhPaths[],
const struct mach_header * const mhdrs[])
{
static bool firstTime = YES;
header_info *hList[mhCount];
uint32_t hCount;
size_t selrefCount = 0;
// Perform first-time initialization if necessary.
// This function is called before ordinary library initializers.
// fixme defer initialization until an objc-using image is found?
if (firstTime) {
preopt_init();
}
if (PrintImages) {
_objc_inform("IMAGES: processing %u newly-mapped images...\n", mhCount);
}
// Find all images with Objective-C metadata.
hCount = 0;
// Count classes. Size various table based on the total.
int totalClasses = 0;
int unoptimizedTotalClasses = 0;
{
uint32_t i = mhCount;
while (i--) {
const headerType *mhdr = (const headerType *)mhdrs[i];
auto hi = addHeader(mhdr, mhPaths[i], totalClasses, unoptimizedTotalClasses);
if (!hi) {
// no objc data in this entry
continue;
}
if (mhdr->filetype == MH_EXECUTE) {
// Size some data structures based on main executable's size
#if __OBJC2__
size_t count;
_getObjc2SelectorRefs(hi, &count);
selrefCount += count;
_getObjc2MessageRefs(hi, &count);
selrefCount += count;
#else
_getObjcSelectorRefs(hi, &selrefCount);
#endif
#if SUPPORT_GC_COMPAT
// Halt if this is a GC app.
if (shouldRejectGCApp(hi)) {
_objc_fatal_with_reason
(OBJC_EXIT_REASON_GC_NOT_SUPPORTED,
OS_REASON_FLAG_CONSISTENT_FAILURE,
"Objective-C garbage collection "
"is no longer supported.");
}
#endif
}
hList[hCount++] = hi;
if (PrintImages) {
_objc_inform("IMAGES: loading image for %s%s%s%s%s\n",
hi->fname(),
mhdr->filetype == MH_BUNDLE ? " (bundle)" : "",
hi->info()->isReplacement() ? " (replacement)" : "",
hi->info()->hasCategoryClassProperties() ? " (has class properties)" : "",
hi->info()->optimizedByDyld()?" (preoptimized)":"");
}
}
}
// Perform one-time runtime initialization that must be deferred until
// the executable itself is found. This needs to be done before
// further initialization.
// (The executable may not be present in this infoList if the
// executable does not contain Objective-C code but Objective-C
// is dynamically loaded later.
if (firstTime) {
//进行全局sel集合的初始化
sel_init(selrefCount);
//进行全局的自动释放池、关联对象表、弱引用表、引用计数表的初始化
arr_init();
#if SUPPORT_GC_COMPAT
// Reject any GC images linked to the main executable.
// We already rejected the app itself above.
// Images loaded after launch will be rejected by dyld.
for (uint32_t i = 0; i < hCount; i++) {
auto hi = hList[i];
auto mh = hi->mhdr();
if (mh->filetype != MH_EXECUTE && shouldRejectGCImage(mh)) {
_objc_fatal_with_reason
(OBJC_EXIT_REASON_GC_NOT_SUPPORTED,
OS_REASON_FLAG_CONSISTENT_FAILURE,
"%s requires Objective-C garbage collection "
"which is no longer supported.", hi->fname());
}
}
#endif
#if TARGET_OS_OSX
// Disable +initialize fork safety if the app is too old (< 10.13).
// Disable +initialize fork safety if the app has a
// __DATA,__objc_fork_ok section.
if (dyld_get_program_sdk_version() < DYLD_MACOSX_VERSION_10_13) {
DisableInitializeForkSafety = true;
if (PrintInitializing) {
_objc_inform("INITIALIZE: disabling +initialize fork "
"safety enforcement because the app is "
"too old (SDK version " SDK_FORMAT ")",
FORMAT_SDK(dyld_get_program_sdk_version()));
}
}
for (uint32_t i = 0; i < hCount; i++) {
auto hi = hList[i];
auto mh = hi->mhdr();
if (mh->filetype != MH_EXECUTE) continue;
unsigned long size;
if (getsectiondata(hi->mhdr(), "__DATA", "__objc_fork_ok", &size)) {
DisableInitializeForkSafety = true;
if (PrintInitializing) {
_objc_inform("INITIALIZE: disabling +initialize fork "
"safety enforcement because the app has "
"a __DATA,__objc_fork_ok section");
}
}
break; // assume only one MH_EXECUTE image
}
#endif
}
if (hCount > 0) {
//读取所有类
_read_images(hList, hCount, totalClasses, unoptimizedTotalClasses);
}
firstTime = NO;
// Call image load funcs after everything is set up.
for (auto func : loadImageFuncs) {
for (uint32_t i = 0; i < mhCount; i++) {
func(mhdrs[i]);
}
}
}
看一下最关键的_read_images,主要逻辑是:条件控制只执行一次、处理编译阶段SEL混乱的问题、错误的类处理、加载协议、分类处理、类的读取、以及针对某些非懒加载的在直接进行实现。
void _read_images(header_info **hList, uint32_t hCount, int totalClasses, int unoptimizedTotalClasses)
{
header_info *hi;
uint32_t hIndex;
size_t count;
size_t i;
Class *resolvedFutureClasses = nil;
size_t resolvedFutureClassCount = 0;
static bool doneOnce;
bool launchTime = NO;
TimeLogger ts(PrintImageTimes);
runtimeLock.assertLocked();
#define EACH_HEADER \
hIndex = 0; \
hIndex < hCount && (hi = hList[hIndex]); \
hIndex++
if (!doneOnce) {
doneOnce = YES;
launchTime = YES;
#if SUPPORT_NONPOINTER_ISA
// Disable non-pointer isa under some conditions.
# if SUPPORT_INDEXED_ISA
// Disable nonpointer isa if any image contains old Swift code
for (EACH_HEADER) {
if (hi->info()->containsSwift() &&
hi->info()->swiftUnstableVersion() < objc_image_info::SwiftVersion3)
{
DisableNonpointerIsa = true;
if (PrintRawIsa) {
_objc_inform("RAW ISA: disabling non-pointer isa because "
"the app or a framework contains Swift code "
"older than Swift 3.0");
}
break;
}
}
# endif
# if TARGET_OS_OSX
// Disable non-pointer isa if the app is too old
// (linked before OS X 10.11)
if (dyld_get_program_sdk_version() < DYLD_MACOSX_VERSION_10_11) {
DisableNonpointerIsa = true;
if (PrintRawIsa) {
_objc_inform("RAW ISA: disabling non-pointer isa because "
"the app is too old (SDK version " SDK_FORMAT ")",
FORMAT_SDK(dyld_get_program_sdk_version()));
}
}
// Disable non-pointer isa if the app has a __DATA,__objc_rawisa section
// New apps that load old extensions may need this.
for (EACH_HEADER) {
if (hi->mhdr()->filetype != MH_EXECUTE) continue;
unsigned long size;
if (getsectiondata(hi->mhdr(), "__DATA", "__objc_rawisa", &size)) {
DisableNonpointerIsa = true;
if (PrintRawIsa) {
_objc_inform("RAW ISA: disabling non-pointer isa because "
"the app has a __DATA,__objc_rawisa section");
}
}
break; // assume only one MH_EXECUTE image
}
# endif
#endif
if (DisableTaggedPointers) {
disableTaggedPointers();
}
initializeTaggedPointerObfuscator();
if (PrintConnecting) {
_objc_inform("CLASS: found %d classes during launch", totalClasses);
}
// namedClasses
// Preoptimized classes don't go in this table.
// 4/3 is NXMapTable's load factor
int namedClassesSize =
(isPreoptimized() ? unoptimizedTotalClasses : totalClasses) * 4 / 3;
gdb_objc_realized_classes =
NXCreateMapTable(NXStrValueMapPrototype, namedClassesSize);
ts.log("IMAGE TIMES: first time tasks");
}
// Fix up @selector references
static size_t UnfixedSelectors;
{
mutex_locker_t lock(selLock);
for (EACH_HEADER) {
if (hi->hasPreoptimizedSelectors()) continue;
bool isBundle = hi->isBundle();
SEL *sels = _getObjc2SelectorRefs(hi, &count);
UnfixedSelectors += count;
for (i = 0; i < count; i++) {
const char *name = sel_cname(sels[i]);
SEL sel = sel_registerNameNoLock(name, isBundle);
if (sels[i] != sel) {
sels[i] = sel;
}
}
}
}
ts.log("IMAGE TIMES: fix up selector references");
// Discover classes. Fix up unresolved future classes. Mark bundle classes.
bool hasDyldRoots = dyld_shared_cache_some_image_overridden();
for (EACH_HEADER) {
if (! mustReadClasses(hi, hasDyldRoots)) {
// Image is sufficiently optimized that we need not call readClass()
continue;
}
classref_t const *classlist = _getObjc2ClassList(hi, &count);
bool headerIsBundle = hi->isBundle();
bool headerIsPreoptimized = hi->hasPreoptimizedClasses();
for (i = 0; i < count; i++) {
Class cls = (Class)classlist[i];
Class newCls = readClass(cls, headerIsBundle, headerIsPreoptimized);
if (newCls != cls && newCls) {
// Class was moved but not deleted. Currently this occurs
// only when the new class resolved a future class.
// Non-lazily realize the class below.
resolvedFutureClasses = (Class *)
realloc(resolvedFutureClasses,
(resolvedFutureClassCount+1) * sizeof(Class));
resolvedFutureClasses[resolvedFutureClassCount++] = newCls;
}
}
}
ts.log("IMAGE TIMES: discover classes");
// Fix up remapped classes
// Class list and nonlazy class list remain unremapped.
// Class refs and super refs are remapped for message dispatching.
if (!noClassesRemapped()) {
for (EACH_HEADER) {
Class *classrefs = _getObjc2ClassRefs(hi, &count);
for (i = 0; i < count; i++) {
remapClassRef(&classrefs[i]);
}
// fixme why doesn't test future1 catch the absence of this?
classrefs = _getObjc2SuperRefs(hi, &count);
for (i = 0; i < count; i++) {
remapClassRef(&classrefs[i]);
}
}
}
ts.log("IMAGE TIMES: remap classes");
#if SUPPORT_FIXUP
// Fix up old objc_msgSend_fixup call sites
for (EACH_HEADER) {
message_ref_t *refs = _getObjc2MessageRefs(hi, &count);
if (count == 0) continue;
if (PrintVtables) {
_objc_inform("VTABLES: repairing %zu unsupported vtable dispatch "
"call sites in %s", count, hi->fname());
}
for (i = 0; i < count; i++) {
fixupMessageRef(refs+i);
}
}
ts.log("IMAGE TIMES: fix up objc_msgSend_fixup");
#endif
bool cacheSupportsProtocolRoots = sharedCacheSupportsProtocolRoots();
// Discover protocols. Fix up protocol refs.
for (EACH_HEADER) {
extern objc_class OBJC_CLASS_$_Protocol;
Class cls = (Class)&OBJC_CLASS_$_Protocol;
ASSERT(cls);
NXMapTable *protocol_map = protocols();
bool isPreoptimized = hi->hasPreoptimizedProtocols();
// Skip reading protocols if this is an image from the shared cache
// and we support roots
// Note, after launch we do need to walk the protocol as the protocol
// in the shared cache is marked with isCanonical() and that may not
// be true if some non-shared cache binary was chosen as the canonical
// definition
if (launchTime && isPreoptimized && cacheSupportsProtocolRoots) {
if (PrintProtocols) {
_objc_inform("PROTOCOLS: Skipping reading protocols in image: %s",
hi->fname());
}
continue;
}
bool isBundle = hi->isBundle();
protocol_t * const *protolist = _getObjc2ProtocolList(hi, &count);
for (i = 0; i < count; i++) {
readProtocol(protolist[i], cls, protocol_map,
isPreoptimized, isBundle);
}
}
ts.log("IMAGE TIMES: discover protocols");
// Fix up @protocol references
// Preoptimized images may have the right
// answer already but we don't know for sure.
for (EACH_HEADER) {
// At launch time, we know preoptimized image refs are pointing at the
// shared cache definition of a protocol. We can skip the check on
// launch, but have to visit @protocol refs for shared cache images
// loaded later.
if (launchTime && cacheSupportsProtocolRoots && hi->isPreoptimized())
continue;
protocol_t **protolist = _getObjc2ProtocolRefs(hi, &count);
for (i = 0; i < count; i++) {
remapProtocolRef(&protolist[i]);
}
}
ts.log("IMAGE TIMES: fix up @protocol references");
// Discover categories. Only do this after the initial category
// attachment has been done. For categories present at startup,
// discovery is deferred until the first load_images call after
// the call to _dyld_objc_notify_register completes. rdar://problem/53119145
if (didInitialAttachCategories) {
for (EACH_HEADER) {
load_categories_nolock(hi);
}
}
ts.log("IMAGE TIMES: discover categories");
// Category discovery MUST BE Late to avoid potential races
// when other threads call the new category code before
// this thread finishes its fixups.
// +load handled by prepare_load_methods()
// Realize non-lazy classes (for +load methods and static instances)
for (EACH_HEADER) {
classref_t const *classlist =
_getObjc2NonlazyClassList(hi, &count);
for (i = 0; i < count; i++) {
Class cls = remapClass(classlist[i]);
if (!cls) continue;
addClassTableEntry(cls);
if (cls->isSwiftStable()) {
if (cls->swiftMetadataInitializer()) {
_objc_fatal("Swift class %s with a metadata initializer "
"is not allowed to be non-lazy",
cls->nameForLogging());
}
// fixme also disallow relocatable classes
// We can't disallow all Swift classes because of
// classes like Swift.__EmptyArrayStorage
}
//对于非懒加载的在,其实实现它,具体怎么实现呢,看后面
realizeClassWithoutSwift(cls, nil);
}
}
ts.log("IMAGE TIMES: realize non-lazy classes");
// Realize newly-resolved future classes, in case CF manipulates them
if (resolvedFutureClasses) {
for (i = 0; i < resolvedFutureClassCount; i++) {
Class cls = resolvedFutureClasses[i];
if (cls->isSwiftStable()) {
_objc_fatal("Swift class is not allowed to be future");
}
realizeClassWithoutSwift(cls, nil);
cls->setInstancesRequireRawIsaRecursively(false/*inherited*/);
}
free(resolvedFutureClasses);
}
ts.log("IMAGE TIMES: realize future classes");
if (DebugNonFragileIvars) {
realizeAllClasses();
}
// Print preoptimization statistics
if (PrintPreopt) {
static unsigned int PreoptTotalMethodLists;
static unsigned int PreoptOptimizedMethodLists;
static unsigned int PreoptTotalClasses;
static unsigned int PreoptOptimizedClasses;
for (EACH_HEADER) {
if (hi->hasPreoptimizedSelectors()) {
_objc_inform("PREOPTIMIZATION: honoring preoptimized selectors "
"in %s", hi->fname());
}
else if (hi->info()->optimizedByDyld()) {
_objc_inform("PREOPTIMIZATION: IGNORING preoptimized selectors "
"in %s", hi->fname());
}
classref_t const *classlist = _getObjc2ClassList(hi, &count);
for (i = 0; i < count; i++) {
Class cls = remapClass(classlist[i]);
if (!cls) continue;
PreoptTotalClasses++;
if (hi->hasPreoptimizedClasses()) {
PreoptOptimizedClasses++;
}
const method_list_t *mlist;
if ((mlist = ((class_ro_t *)cls->data())->baseMethods())) {
PreoptTotalMethodLists++;
if (mlist->isFixedUp()) {
PreoptOptimizedMethodLists++;
}
}
if ((mlist=((class_ro_t *)cls->ISA()->data())->baseMethods())) {
PreoptTotalMethodLists++;
if (mlist->isFixedUp()) {
PreoptOptimizedMethodLists++;
}
}
}
}
_objc_inform("PREOPTIMIZATION: %zu selector references not "
"pre-optimized", UnfixedSelectors);
_objc_inform("PREOPTIMIZATION: %u/%u (%.3g%%) method lists pre-sorted",
PreoptOptimizedMethodLists, PreoptTotalMethodLists,
PreoptTotalMethodLists
? 100.0*PreoptOptimizedMethodLists/PreoptTotalMethodLists
: 0.0);
_objc_inform("PREOPTIMIZATION: %u/%u (%.3g%%) classes pre-registered",
PreoptOptimizedClasses, PreoptTotalClasses,
PreoptTotalClasses
? 100.0*PreoptOptimizedClasses/PreoptTotalClasses
: 0.0);
_objc_inform("PREOPTIMIZATION: %zu protocol references not "
"pre-optimized", UnfixedProtocolReferences);
}
#undef EACH_HEADER
}
再看一下最关键的readClass,主要就是把类读取到全局的classTable中来
Class readClass(Class cls, bool headerIsBundle, bool headerIsPreoptimized)
{
if (missingWeakSuperclass(cls)) {
// No superclass (probably weak-linked).
// Disavow any knowledge of this subclass.
if (PrintConnecting) {
_objc_inform("CLASS: IGNORING class '%s' with "
"missing weak-linked superclass",
cls->nameForLogging());
}
addRemappedClass(cls, nil);
cls->superclass = nil;
return nil;
}
cls->fixupBackwardDeployingStableSwift();
Class replacing = nil;
if (Class newCls = popFutureNamedClass(mangledName)) {
// This name was previously allocated as a future class.
// Copy objc_class to future class's struct.
// Preserve future's rw data block.
if (newCls->isAnySwift()) {
_objc_fatal("Can't complete future class request for '%s' "
"because the real class is too big.",
cls->nameForLogging());
}
class_rw_t *rw = newCls->data();
const class_ro_t *old_ro = rw->ro();
memcpy(newCls, cls, sizeof(objc_class));
rw->set_ro((class_ro_t *)newCls->data());
newCls->setData(rw);
freeIfMutable((char *)old_ro->name);
free((void *)old_ro);
addRemappedClass(cls, newCls);
replacing = cls;
cls = newCls;
}
if (headerIsPreoptimized && !replacing) {
// class list built in shared cache
// fixme strict assert doesn't work because of duplicates
// ASSERT(cls == getClass(name));
ASSERT(getClassExceptSomeSwift(mangledName));
} else {
addNamedClass(cls, mangledName, replacing);
addClassTableEntry(cls);
}
// for future reference: shared cache never contains MH_BUNDLEs
if (headerIsBundle) {
cls->data()->flags |= RO_FROM_BUNDLE;
cls->ISA()->data()->flags |= RO_FROM_BUNDLE;
}
return cls;
}
梳理一下类的读取流程:map_images->map_images_nolock->_read_images->readClass->addClassTableEntry,就是读取images中所有的类并把它们加载到全局的classTable中来。
类的实现
另外在read_images过程中对于非懒加载的类(实现过load方法的类)会直接对其实现,进入realizeClassWithoutSwift方法中来。而该方法主要是处理类以及其父类元类的关系,加载方法列表(包括分类的方法)。
static Class realizeClassWithoutSwift(Class cls, Class previously)
{
runtimeLock.assertLocked();
class_rw_t *rw;
Class supercls;
Class metacls;
if (!cls) return nil;
if (cls->isRealized()) return cls;
ASSERT(cls == remapClass(cls));
// fixme verify class is not in an un-dlopened part of the shared cache?
auto ro = (const class_ro_t *)cls->data();
auto isMeta = ro->flags & RO_META;
if (ro->flags & RO_FUTURE) {
// This was a future class. rw data is already allocated.
rw = cls->data();
ro = cls->data()->ro();
ASSERT(!isMeta);
cls->changeInfo(RW_REALIZED|RW_REALIZING, RW_FUTURE);
} else {
// Normal class. Allocate writeable class data.
//申请rw空间大小的内存
rw = objc::zalloc<class_rw_t>();
//填充其数据为ro
rw->set_ro(ro);
rw->flags = RW_REALIZED|RW_REALIZING|isMeta;
//设置类的rw信息!!!
cls->setData(rw);
}
#if FAST_CACHE_META
if (isMeta) cls->cache.setBit(FAST_CACHE_META);
#endif
// Choose an index for this class.
// Sets cls->instancesRequireRawIsa if indexes no more indexes are available
cls->chooseClassArrayIndex();
if (PrintConnecting) {
_objc_inform("CLASS: realizing class '%s'%s %p %p #%u %s%s",
cls->nameForLogging(), isMeta ? " (meta)" : "",
(void*)cls, ro, cls->classArrayIndex(),
cls->isSwiftStable() ? "(swift)" : "",
cls->isSwiftLegacy() ? "(pre-stable swift)" : "");
}
//获取其父类和元类信息,建立oc类、父类、元类三者之间的关系
supercls = realizeClassWithoutSwift(remapClass(cls->superclass), nil);
metacls = realizeClassWithoutSwift(remapClass(cls->ISA()), nil);
#if SUPPORT_NONPOINTER_ISA
if (isMeta) {
// Metaclasses do not need any features from non pointer ISA
// This allows for a faspath for classes in objc_retain/objc_release.
cls->setInstancesRequireRawIsa();
} else {
// Disable non-pointer isa for some classes and/or platforms.
// Set instancesRequireRawIsa.
bool instancesRequireRawIsa = cls->instancesRequireRawIsa();
bool rawIsaIsInherited = false;
static bool hackedDispatch = false;
if (DisableNonpointerIsa) {
// Non-pointer isa disabled by environment or app SDK version
instancesRequireRawIsa = true;
}
else if (!hackedDispatch && 0 == strcmp(ro->name, "OS_object"))
{
// hack for libdispatch et al - isa also acts as vtable pointer
hackedDispatch = true;
instancesRequireRawIsa = true;
}
else if (supercls && supercls->superclass &&
supercls->instancesRequireRawIsa())
{
// This is also propagated by addSubclass()
// but nonpointer isa setup needs it earlier.
// Special case: instancesRequireRawIsa does not propagate
// from root class to root metaclass
instancesRequireRawIsa = true;
rawIsaIsInherited = true;
}
if (instancesRequireRawIsa) {
cls->setInstancesRequireRawIsaRecursively(rawIsaIsInherited);
}
}
// SUPPORT_NONPOINTER_ISA
#endif
// Update superclass and metaclass in case of remapping
cls->superclass = supercls;
cls->initClassIsa(metacls);
// Reconcile instance variable offsets / layout.
// This may reallocate class_ro_t, updating our ro variable.
if (supercls && !isMeta) reconcileInstanceVariables(cls, supercls, ro);
// Set fastInstanceSize if it wasn't set already.
cls->setInstanceSize(ro->instanceSize);
// Copy some flags from ro to rw
if (ro->flags & RO_HAS_CXX_STRUCTORS) {
cls->setHasCxxDtor();
if (! (ro->flags & RO_HAS_CXX_DTOR_ONLY)) {
cls->setHasCxxCtor();
}
}
// Propagate the associated objects forbidden flag from ro or from
// the superclass.
if ((ro->flags & RO_FORBIDS_ASSOCIATED_OBJECTS) ||
(supercls && supercls->forbidsAssociatedObjects()))
{
rw->flags |= RW_FORBIDS_ASSOCIATED_OBJECTS;
}
// Connect this class to its superclass's subclass lists
if (supercls) {
addSubclass(supercls, cls);
} else {
addRootClass(cls);
}
// Attach categories
//加载方法列表,以及分类数据
methodizeClass(cls, previously);
return cls;
}
分类的本质
在进入methodizeClass方法前我们先看一下分类的本质是什么。最核心的是被转换成了_category_t这个一个结构体。
//定义一个LGPerson的分类,增加一个类方法和实例方法以及一个属性
@interface LGPerson(AA)
@property (nonatomic, copy) NSString *categoryNickName;
- (void)lg_categoryInstanceMethod;
+ (void)lg_categoryClassMethod;
@end
@implementation LGPerson(AA)
- (void)lg_categoryInstanceMethod{
}
+ (void)lg_categoryClassMethod {
}
@end
然后用 clang -rewrite-objc main.m -o main.cpp 看一下在编译阶段真正的实现
//声明并初始化了一个类型为_category_t的全局静态变量
static struct _category_t _OBJC_$_CATEGORY_LGPerson_$_AA __attribute__ ((used, section ("__DATA,__objc_const"))) =
{
"LGPerson",
0, // &OBJC_CLASS_$_LGPerson,
(const struct _method_list_t *)&_OBJC_$_CATEGORY_INSTANCE_METHODS_LGPerson_$_AA,
(const struct _method_list_t *)&_OBJC_$_CATEGORY_CLASS_METHODS_LGPerson_$_AA,
0,
(const struct _prop_list_t *)&_OBJC_$_PROP_LIST_LGPerson_$_AA,
};
//看一下_category_t是什么
struct _category_t {
const char *name;//类名称
struct _class_t *cls;//类
const struct _method_list_t *instance_methods;//实例方法列表
const struct _method_list_t *class_methods;//类方法列表
const struct _protocol_list_t *protocols;//协议列表
const struct _prop_list_t *properties;//属性列表
};
static struct /*_method_list_t*/ {
unsigned int entsize; // sizeof(struct _objc_method)
unsigned int method_count;
struct _objc_method method_list[1];
} _OBJC_$_CATEGORY_INSTANCE_METHODS_LGPerson_$_AA __attribute__ ((used, section ("__DATA,__objc_const"))) = {
sizeof(_objc_method),
1,
{{(struct objc_selector *)"lg_categoryInstanceMethod", "v16@0:8", (void *)_I_LGPerson_AA_lg_categoryInstanceMethod}}
};
static struct /*_method_list_t*/ {
unsigned int entsize; // sizeof(struct _objc_method)
unsigned int method_count;
struct _objc_method method_list[1];
} _OBJC_$_CATEGORY_CLASS_METHODS_LGPerson_$_AA __attribute__ ((used, section ("__DATA,__objc_const"))) = {
sizeof(_objc_method),
1,
{{(struct objc_selector *)"lg_categoryClassMethod", "v16@0:8", (void *)_C_LGPerson_AA_lg_categoryClassMethod}}
};
static struct /*_prop_list_t*/ {
unsigned int entsize; // sizeof(struct _prop_t)
unsigned int count_of_properties;
struct _prop_t prop_list[1];
} _OBJC_$_PROP_LIST_LGPerson_$_AA __attribute__ ((used, section ("__DATA,__objc_const"))) = {
sizeof(_prop_t),
1,
{{"categoryNickName","T@\"NSString\",C,N"}}
};
可以看到在底层分类被转换成了_category_t这个结构体,里面存储了所有的方法和属性,但属性没有get、set方法。
方法的处理
那接下来我们看一下methodizeClass中是如何处理类的方法以及分类方法的。主要是从ro中取出baseMethods,然后进行排序,如果需要处理分类(当分类中实现了load方法),则会把分类数据attach到整个方法列表中来。
static void methodizeClass(Class cls, Class previously)
{
runtimeLock.assertLocked();
bool isMeta = cls->isMetaClass();
auto rw = cls->data();
auto ro = rw->ro();
auto rwe = rw->ext();
// Methodizing for the first time
if (PrintConnecting) {
_objc_inform("CLASS: methodizing class '%s' %s",
cls->nameForLogging(), isMeta ? "(meta)" : "");
}
// Install methods and properties that the class implements itself.
method_list_t *list = ro->baseMethods();
if (list) {
//对方法进行排序
prepareMethodLists(cls, &list, 1, YES, isBundleClass(cls));
if (rwe) rwe->methods.attachLists(&list, 1);
}
property_list_t *proplist = ro->baseProperties;
if (rwe && proplist) {
rwe->properties.attachLists(&proplist, 1);
}
protocol_list_t *protolist = ro->baseProtocols;
if (rwe && protolist) {
rwe->protocols.attachLists(&protolist, 1);
}
// Root classes get bonus method implementations if they don't have
// them already. These apply before category replacements.
if (cls->isRootMetaclass()) {
// root metaclass
addMethod(cls, @selector(initialize), (IMP)&objc_noop_imp, "", NO);
}
// Attach categories.
if (previously) {
if (isMeta) {
objc::unattachedCategories.attachToClass(cls, previously,
ATTACH_METACLASS);
} else {
// When a class relocates, categories with class methods
// may be registered on the class itself rather than on
// the metaclass. Tell attachToClass to look for those.
objc::unattachedCategories.attachToClass(cls, previously,
ATTACH_CLASS_AND_METACLASS);
}
}
//该方法会尝试加载分类方法,但内部有条件
objc::unattachedCategories.attachToClass(cls, cls,
isMeta ? ATTACH_METACLASS : ATTACH_CLASS);
#if DEBUG
// Debug: sanity-check all SELs; log method list contents
for (const auto& meth : rw->methods()) {
if (PrintConnecting) {
_objc_inform("METHOD %c[%s %s]", isMeta ? '+' : '-',
cls->nameForLogging(), sel_getName(meth.name));
}
ASSERT(sel_registerName(sel_getName(meth.name)) == meth.name);
}
#endif
}
看一下attachToClass的实现,该方法主要是主类没有load方法,分类有load方法时进行分类方法的attach。
void attachToClass(Class cls, Class previously, int flags)
{
runtimeLock.assertLocked();
ASSERT((flags & ATTACH_CLASS) ||
(flags & ATTACH_METACLASS) ||
(flags & ATTACH_CLASS_AND_METACLASS));
auto &map = get();
auto it = map.find(previously);
if (it != map.end()) {
//只有主类没load,分类有load时条件才成立
category_list &list = it->second;
if (flags & ATTACH_CLASS_AND_METACLASS) {
int otherFlags = flags & ~ATTACH_CLASS_AND_METACLASS;
//处理类
attachCategories(cls, list.array(), list.count(), otherFlags | ATTACH_CLASS);
//处理元类
attachCategories(cls->ISA(), list.array(), list.count(), otherFlags | ATTACH_METACLASS);
} else {
//只处理类
attachCategories(cls, list.array(), list.count(), flags);
}
map.erase(it);
}
}
看一下最attachCategories实现,主要逻辑是先创建rwe,然后遍历所有的分类方法,然后一个一个attach到类的methodlist中来,并排好序
static void attachCategories(Class cls, const locstamped_category_t *cats_list, uint32_t cats_count,
int flags)
{
if (slowpath(PrintReplacedMethods)) {
printReplacements(cls, cats_list, cats_count);
}
if (slowpath(PrintConnecting)) {
_objc_inform("CLASS: attaching %d categories to%s class '%s'%s",
cats_count, (flags & ATTACH_EXISTING) ? " existing" : "",
cls->nameForLogging(), (flags & ATTACH_METACLASS) ? " (meta)" : "");
}
constexpr uint32_t ATTACH_BUFSIZ = 64;
method_list_t *mlists[ATTACH_BUFSIZ];
property_list_t *proplists[ATTACH_BUFSIZ];
protocol_list_t *protolists[ATTACH_BUFSIZ];
uint32_t mcount = 0;
uint32_t propcount = 0;
uint32_t protocount = 0;
bool fromBundle = NO;
bool isMeta = (flags & ATTACH_METACLASS);
//创建rwe
auto rwe = cls->data()->extAllocIfNeeded();
for (uint32_t i = 0; i < cats_count; i++) {
auto& entry = cats_list[i];
method_list_t *mlist = entry.cat->methodsForMeta(isMeta);
if (mlist) {
if (mcount == ATTACH_BUFSIZ) {
prepareMethodLists(cls, mlists, mcount, NO, fromBundle);
rwe->methods.attachLists(mlists, mcount);
mcount = 0;
}
mlists[ATTACH_BUFSIZ - ++mcount] = mlist;
fromBundle |= entry.hi->isBundle();
}
property_list_t *proplist =
entry.cat->propertiesForMeta(isMeta, entry.hi);
if (proplist) {
if (propcount == ATTACH_BUFSIZ) {
rwe->properties.attachLists(proplists, propcount);
propcount = 0;
}
proplists[ATTACH_BUFSIZ - ++propcount] = proplist;
}
protocol_list_t *protolist = entry.cat->protocolsForMeta(isMeta);
if (protolist) {
if (protocount == ATTACH_BUFSIZ) {
rwe->protocols.attachLists(protolists, protocount);
protocount = 0;
}
protolists[ATTACH_BUFSIZ - ++protocount] = protolist;
}
}
if (mcount > 0) {
prepareMethodLists(cls, mlists + ATTACH_BUFSIZ - mcount, mcount, NO, fromBundle);
rwe->methods.attachLists(mlists + ATTACH_BUFSIZ - mcount, mcount);
if (flags & ATTACH_EXISTING) flushCaches(cls);
}
rwe->properties.attachLists(proplists + ATTACH_BUFSIZ - propcount, propcount);
rwe->protocols.attachLists(protolists + ATTACH_BUFSIZ - protocount, protocount);
}
看一下attachlists方法,该方法分三种情况,如果只有一个list,那整个方法列表将是一个单列表,如果从一个变多个list,那将重新分配内存就成二维数组,如果本身就是二维的继续往里面插,则进行内存拷贝和移动。对于新的list是放前面的,所以分类的方法在查找时先被找到。
void attachLists(List* const * addedLists, uint32_t addedCount) {
if (addedCount == 0) return;
if (hasArray()) {
// many lists -> many lists
uint32_t oldCount = array()->count;
uint32_t newCount = oldCount + addedCount;
setArray((array_t *)realloc(array(), array_t::byteSize(newCount)));
array()->count = newCount;
memmove(array()->lists + addedCount, array()->lists,
oldCount * sizeof(array()->lists[0]));
memcpy(array()->lists, addedLists,
addedCount * sizeof(array()->lists[0]));
}
else if (!list && addedCount == 1) {
// 0 lists -> 1 list
list = addedLists[0];
}
else {
// 1 list -> many lists
List* oldList = list;
uint32_t oldCount = oldList ? 1 : 0;
uint32_t newCount = oldCount + addedCount;
setArray((array_t *)malloc(array_t::byteSize(newCount)));
array()->count = newCount;
if (oldList) array()->lists[addedCount] = oldList;
memcpy(array()->lists, addedLists,
addedCount * sizeof(array()->lists[0]));
}
}
其实跟踪attachCategories的调用情况,可以看到还有这样一条调用链路:
load_images->loadAllCategories->load_categories_nolock->attachCategories
那什么情况下会走到该流程中呢,和上面我们分析的分类方法的处理流程又有什么不同呢?
其实主要是根据主类和分类是否有load方法,会有不同的逻辑处理,分4种情况:
- 主类有load,分类有load,分类的加载就是load_images流程中,此时会产生rwe。
- 主类有load,分类没load,主类进入非懒加载流程提交实现,在主类加载的时候会把主类中的方法和分类中的方法一并加载进来,所以此时不会产生rwe。
- 主类没load,分类有load,在load_images方法的prepare_load_methods流程中会加载所有分类中的load方法,此时会调用主类的实现方法,而在其实现方法中会调用attachCategories加载分类。此时会产生rwe。
- 主类没load,分类没load,主类的实现在第一次消息发送的时候,然后会把主类和分类中的方法都一次性加载进来,此时不会产生rwe。
网友评论