普通minist代码

作者: 今天多云很多云 | 来源:发表于2018-07-30 22:24 被阅读0次
    import tensorflow as tf
    from tensorflow.examples.tutorials.mnist import input_data
    
    INPUT_NODE = 784
    OUTPUT_NODE = 10
    
    #配置参数
    LAYER1_NODE = 500
    
    BATCH_SIZE = 100
    
    LEARNING_RATE_BASE = 0.8
    LEARNING_RATE_DECAY = 0.99
    REGULARIZATION_RATE = 0.0001
    TRAINING_STEPS = 30000
    MOVING_AVERAGE_DECAY = 0.99
    
    #辅助函数
    def inference(input_tensor, avg_class, weights1,biases1,weights2,biases2):
        if avg_class == None:
            layer1 = tf.nn.relu(tf.matmul(input_tensor,weights1)+biases1)
            return tf.matmul(layer1,weights2)+biases2
        else:
        
            layer1 = tf.nn.relu(tf.matmul(input_tensor, avg_class.average(weights1)) + avg_class.average(biases1))
            return tf.matmul(layer1, avg_class.average(weights2)) + avg_class.average(biases2)
    
    
    
    #训练过程
    
    def train(mnist):
        x = tf.placeholder(tf.float32, [None, INPUT_NODE], name='x-input')
        y_ = tf.placeholder(tf.float32, [None,OUTPUT_NODE], name = 'y-input')
    
        weights1 = tf.Variable(tf.truncated_normal([INPUT_NODE,LAYER1_NODE], stddev=0.1))
        biases1 = tf.Variable(tf.constant(0.1, shape=[LAYER1_NODE]))
    
        weights2 = tf.Variable(tf.truncated_normal([LAYER1_NODE,OUTPUT_NODE], stddev=0.1))
        biases2 = tf.Variable(tf.constant(0.1,shape=[OUTPUT_NODE]))
    
        y = inference(x,None,weights1, biases1, weights2, biases2)
    
        global_step = tf.Variable(0, trainable = False)
    
        variable_averages = tf.train.ExponentialMovingAverage( MOVING_AVERAGE_DECAY, global_step)
    
    
        variables_averages_op =  variable_averages.apply( tf.trainable_variables())
    
        average_y = inference( x, variable_averages, weights1,biases1,weights2,biases2)
    
    
        cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits( logits=y,labels=tf.argmax(y_,1))
        cross_entropy_mean = tf.reduce_mean(cross_entropy)
    
        regularizer = tf.contrib.layers.l2_regularizer(REGULARIZATION_RATE)
    
    
        regularization = regularizer(weights1) + regularizer(weights2)
    
        loss = cross_entropy_mean + regularization
    
    
    
    
        learning_rate = tf.train.exponential_decay(LEARNING_RATE_BASE,global_step,mnist.train.num_examples / BATCH_SIZE, LEARNING_RATE_DECAY)
    
    
        train_step = tf.train.GradientDescentOptimizer(learning_rate).minimize( loss,global_step= global_step)
    
        with tf.control_dependencies([train_step ,variables_averages_op]):
            train_op = tf.no_op(name='train')
    
        correct_prediction = tf.equal(tf.argmax(average_y,1), tf.argmax(y_,1))
    
        accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32))
    
    
    #初始化会话并开始训练过程
        with tf.Session() as sess:
            tf.global_variables_initializer().run()
            validate_feed = {x:mnist.validation.images, y_:mnist.validation.labels}
    
            test_feed = {x:mnist.test.images, y_:mnist.test.labels}
    
            for i in range(TRAINING_STEPS):
                if i % 1000 == 0:
                    validate_acc = sess.run(accuracy, feed_dict=validate_feed)
                    print('after %d training steps, validation accuracy ''using average model is %g' % (i,validate_acc))
    
    
                xs,ys = mnist.train.next_batch(BATCH_SIZE)
                sess.run(train_op,feed_dict = {x: xs , y_: ys})
    
            test_acc = sess.run(accuracy, feed_dict = test_feed)
            print('after %d training step,test accuracy using average''model is %g' % ( TRAINING_STEPS,test_acc))
    
    def main(argv=None):
        mnist = input_data.read_data_sets('./tmp/data',one_hot=True)
        train(mnist)
    
    
    if __name__ == '__main__':
        tf.app.run()
    
    
    

    相关文章

      网友评论

        本文标题:普通minist代码

        本文链接:https://www.haomeiwen.com/subject/jdmqvftx.html