美文网首页tensorflow笔记
2018-08-09GoogleInceptionV3

2018-08-09GoogleInceptionV3

作者: 今天多云很多云 | 来源:发表于2018-08-09 18:40 被阅读0次

    A结构

    B代码

    A结构:

    结构为非inception的卷积和池化+3个inception模块组+平均池化和线性logits

    非inception的卷积部分:
    c1a----c2a----c2b----maxpool3a---c3b---c4a---maxpool5a

    模块组:


    webwxgetmsgimg.jpeg

    B代码:代码里用slim.arg_scope对参数赋值,slim.conv2d直接一句话创建卷积结构。方便了代码的编写

    测试结果:
    书 GPU:每10步0.145分钟
    我CPU:每10步12分钟。的确比VGG快

    import tensorflow as tf
    
    slim = tf.contrib.slim
    trunc_normal = lambda stddev: tf.truncated_normal_initializer(0.0, stddev)
    
    
    def inception_v3_base(inputs, scope=None):
    
      end_points = {}
    
      with tf.variable_scope(scope, 'InceptionV3', [inputs]):
        with slim.arg_scope([slim.conv2d, slim.max_pool2d, slim.avg_pool2d],
                            stride=1, padding='VALID'):
          # 299 x 299 x 3
          net = slim.conv2d(inputs, 32, [3, 3], stride=2, scope='Conv2d_1a_3x3')
          # 149 x 149 x 32
          net = slim.conv2d(net, 32, [3, 3], scope='Conv2d_2a_3x3')
          # 147 x 147 x 32
          net = slim.conv2d(net, 64, [3, 3], padding='SAME', scope='Conv2d_2b_3x3')
          # 147 x 147 x 64
          net = slim.max_pool2d(net, [3, 3], stride=2, scope='MaxPool_3a_3x3')
          # 73 x 73 x 64
          net = slim.conv2d(net, 80, [1, 1], scope='Conv2d_3b_1x1')
          # 73 x 73 x 80.
          net = slim.conv2d(net, 192, [3, 3], scope='Conv2d_4a_3x3')
          # 71 x 71 x 192.
          net = slim.max_pool2d(net, [3, 3], stride=2, scope='MaxPool_5a_3x3')
          # 35 x 35 x 192.
    
        # Inception blocks
        with slim.arg_scope([slim.conv2d, slim.max_pool2d, slim.avg_pool2d],
                            stride=1, padding='SAME'):
          # mixed: 35 x 35 x 256.
          with tf.variable_scope('Mixed_5b'):
            with tf.variable_scope('Branch_0'):
              branch_0 = slim.conv2d(net, 64, [1, 1], scope='Conv2d_0a_1x1')
            with tf.variable_scope('Branch_1'):
              branch_1 = slim.conv2d(net, 48, [1, 1], scope='Conv2d_0a_1x1')
              branch_1 = slim.conv2d(branch_1, 64, [5, 5], scope='Conv2d_0b_5x5')
            with tf.variable_scope('Branch_2'):
              branch_2 = slim.conv2d(net, 64, [1, 1], scope='Conv2d_0a_1x1')
              branch_2 = slim.conv2d(branch_2, 96, [3, 3], scope='Conv2d_0b_3x3')
              branch_2 = slim.conv2d(branch_2, 96, [3, 3], scope='Conv2d_0c_3x3')
            with tf.variable_scope('Branch_3'):
              branch_3 = slim.avg_pool2d(net, [3, 3], scope='AvgPool_0a_3x3')
              branch_3 = slim.conv2d(branch_3, 32, [1, 1], scope='Conv2d_0b_1x1')
            net = tf.concat([branch_0, branch_1, branch_2, branch_3], 3)
    
          # mixed_1: 35 x 35 x 288.
          with tf.variable_scope('Mixed_5c'):
            with tf.variable_scope('Branch_0'):
              branch_0 = slim.conv2d(net, 64, [1, 1], scope='Conv2d_0a_1x1')
            with tf.variable_scope('Branch_1'):
              branch_1 = slim.conv2d(net, 48, [1, 1], scope='Conv2d_0b_1x1')
              branch_1 = slim.conv2d(branch_1, 64, [5, 5], scope='Conv_1_0c_5x5')
            with tf.variable_scope('Branch_2'):
              branch_2 = slim.conv2d(net, 64, [1, 1], scope='Conv2d_0a_1x1')
              branch_2 = slim.conv2d(branch_2, 96, [3, 3], scope='Conv2d_0b_3x3')
              branch_2 = slim.conv2d(branch_2, 96, [3, 3], scope='Conv2d_0c_3x3')
            with tf.variable_scope('Branch_3'):
              branch_3 = slim.avg_pool2d(net, [3, 3], scope='AvgPool_0a_3x3')
              branch_3 = slim.conv2d(branch_3, 64, [1, 1], scope='Conv2d_0b_1x1')
            net = tf.concat([branch_0, branch_1, branch_2, branch_3], 3)
    
          # mixed_2: 35 x 35 x 288.
          with tf.variable_scope('Mixed_5d'):
            with tf.variable_scope('Branch_0'):
              branch_0 = slim.conv2d(net, 64, [1, 1], scope='Conv2d_0a_1x1')
            with tf.variable_scope('Branch_1'):
              branch_1 = slim.conv2d(net, 48, [1, 1], scope='Conv2d_0a_1x1')
              branch_1 = slim.conv2d(branch_1, 64, [5, 5], scope='Conv2d_0b_5x5')
            with tf.variable_scope('Branch_2'):
              branch_2 = slim.conv2d(net, 64, [1, 1], scope='Conv2d_0a_1x1')
              branch_2 = slim.conv2d(branch_2, 96, [3, 3], scope='Conv2d_0b_3x3')
              branch_2 = slim.conv2d(branch_2, 96, [3, 3], scope='Conv2d_0c_3x3')
            with tf.variable_scope('Branch_3'):
              branch_3 = slim.avg_pool2d(net, [3, 3], scope='AvgPool_0a_3x3')
              branch_3 = slim.conv2d(branch_3, 64, [1, 1], scope='Conv2d_0b_1x1')
            net = tf.concat([branch_0, branch_1, branch_2, branch_3], 3)
    
          # mixed_3: 17 x 17 x 768.
          with tf.variable_scope('Mixed_6a'):
            with tf.variable_scope('Branch_0'):
              branch_0 = slim.conv2d(net, 384, [3, 3], stride=2,
                                     padding='VALID', scope='Conv2d_1a_1x1')
            with tf.variable_scope('Branch_1'):
              branch_1 = slim.conv2d(net, 64, [1, 1], scope='Conv2d_0a_1x1')
              branch_1 = slim.conv2d(branch_1, 96, [3, 3], scope='Conv2d_0b_3x3')
              branch_1 = slim.conv2d(branch_1, 96, [3, 3], stride=2,
                                     padding='VALID', scope='Conv2d_1a_1x1')
            with tf.variable_scope('Branch_2'):
              branch_2 = slim.max_pool2d(net, [3, 3], stride=2, padding='VALID',
                                         scope='MaxPool_1a_3x3')
            net = tf.concat([branch_0, branch_1, branch_2], 3)
    
          # mixed4: 17 x 17 x 768.
          with tf.variable_scope('Mixed_6b'):
            with tf.variable_scope('Branch_0'):
              branch_0 = slim.conv2d(net, 192, [1, 1], scope='Conv2d_0a_1x1')
            with tf.variable_scope('Branch_1'):
              branch_1 = slim.conv2d(net, 128, [1, 1], scope='Conv2d_0a_1x1')
              branch_1 = slim.conv2d(branch_1, 128, [1, 7], scope='Conv2d_0b_1x7')
              branch_1 = slim.conv2d(branch_1, 192, [7, 1], scope='Conv2d_0c_7x1')
            with tf.variable_scope('Branch_2'):
              branch_2 = slim.conv2d(net, 128, [1, 1], scope='Conv2d_0a_1x1')
              branch_2 = slim.conv2d(branch_2, 128, [7, 1], scope='Conv2d_0b_7x1')
              branch_2 = slim.conv2d(branch_2, 128, [1, 7], scope='Conv2d_0c_1x7')
              branch_2 = slim.conv2d(branch_2, 128, [7, 1], scope='Conv2d_0d_7x1')
              branch_2 = slim.conv2d(branch_2, 192, [1, 7], scope='Conv2d_0e_1x7')
            with tf.variable_scope('Branch_3'):
              branch_3 = slim.avg_pool2d(net, [3, 3], scope='AvgPool_0a_3x3')
              branch_3 = slim.conv2d(branch_3, 192, [1, 1], scope='Conv2d_0b_1x1')
            net = tf.concat([branch_0, branch_1, branch_2, branch_3], 3)
    
          # mixed_5: 17 x 17 x 768.
          with tf.variable_scope('Mixed_6c'):
            with tf.variable_scope('Branch_0'):
              branch_0 = slim.conv2d(net, 192, [1, 1], scope='Conv2d_0a_1x1')
            with tf.variable_scope('Branch_1'):
              branch_1 = slim.conv2d(net, 160, [1, 1], scope='Conv2d_0a_1x1')
              branch_1 = slim.conv2d(branch_1, 160, [1, 7], scope='Conv2d_0b_1x7')
              branch_1 = slim.conv2d(branch_1, 192, [7, 1], scope='Conv2d_0c_7x1')
            with tf.variable_scope('Branch_2'):
              branch_2 = slim.conv2d(net, 160, [1, 1], scope='Conv2d_0a_1x1')
              branch_2 = slim.conv2d(branch_2, 160, [7, 1], scope='Conv2d_0b_7x1')
              branch_2 = slim.conv2d(branch_2, 160, [1, 7], scope='Conv2d_0c_1x7')
              branch_2 = slim.conv2d(branch_2, 160, [7, 1], scope='Conv2d_0d_7x1')
              branch_2 = slim.conv2d(branch_2, 192, [1, 7], scope='Conv2d_0e_1x7')
            with tf.variable_scope('Branch_3'):
              branch_3 = slim.avg_pool2d(net, [3, 3], scope='AvgPool_0a_3x3')
              branch_3 = slim.conv2d(branch_3, 192, [1, 1], scope='Conv2d_0b_1x1')
            net = tf.concat([branch_0, branch_1, branch_2, branch_3], 3)
          # mixed_6: 17 x 17 x 768.
          with tf.variable_scope('Mixed_6d'):
            with tf.variable_scope('Branch_0'):
              branch_0 = slim.conv2d(net, 192, [1, 1], scope='Conv2d_0a_1x1')
            with tf.variable_scope('Branch_1'):
              branch_1 = slim.conv2d(net, 160, [1, 1], scope='Conv2d_0a_1x1')
              branch_1 = slim.conv2d(branch_1, 160, [1, 7], scope='Conv2d_0b_1x7')
              branch_1 = slim.conv2d(branch_1, 192, [7, 1], scope='Conv2d_0c_7x1')
            with tf.variable_scope('Branch_2'):
              branch_2 = slim.conv2d(net, 160, [1, 1], scope='Conv2d_0a_1x1')
              branch_2 = slim.conv2d(branch_2, 160, [7, 1], scope='Conv2d_0b_7x1')
              branch_2 = slim.conv2d(branch_2, 160, [1, 7], scope='Conv2d_0c_1x7')
              branch_2 = slim.conv2d(branch_2, 160, [7, 1], scope='Conv2d_0d_7x1')
              branch_2 = slim.conv2d(branch_2, 192, [1, 7], scope='Conv2d_0e_1x7')
            with tf.variable_scope('Branch_3'):
              branch_3 = slim.avg_pool2d(net, [3, 3], scope='AvgPool_0a_3x3')
              branch_3 = slim.conv2d(branch_3, 192, [1, 1], scope='Conv2d_0b_1x1')
            net = tf.concat([branch_0, branch_1, branch_2, branch_3], 3)
    
          # mixed_7: 17 x 17 x 768.
          with tf.variable_scope('Mixed_6e'):
            with tf.variable_scope('Branch_0'):
              branch_0 = slim.conv2d(net, 192, [1, 1], scope='Conv2d_0a_1x1')
            with tf.variable_scope('Branch_1'):
              branch_1 = slim.conv2d(net, 192, [1, 1], scope='Conv2d_0a_1x1')
              branch_1 = slim.conv2d(branch_1, 192, [1, 7], scope='Conv2d_0b_1x7')
              branch_1 = slim.conv2d(branch_1, 192, [7, 1], scope='Conv2d_0c_7x1')
            with tf.variable_scope('Branch_2'):
              branch_2 = slim.conv2d(net, 192, [1, 1], scope='Conv2d_0a_1x1')
              branch_2 = slim.conv2d(branch_2, 192, [7, 1], scope='Conv2d_0b_7x1')
              branch_2 = slim.conv2d(branch_2, 192, [1, 7], scope='Conv2d_0c_1x7')
              branch_2 = slim.conv2d(branch_2, 192, [7, 1], scope='Conv2d_0d_7x1')
              branch_2 = slim.conv2d(branch_2, 192, [1, 7], scope='Conv2d_0e_1x7')
            with tf.variable_scope('Branch_3'):
              branch_3 = slim.avg_pool2d(net, [3, 3], scope='AvgPool_0a_3x3')
              branch_3 = slim.conv2d(branch_3, 192, [1, 1], scope='Conv2d_0b_1x1')
            net = tf.concat([branch_0, branch_1, branch_2, branch_3], 3)
          end_points['Mixed_6e'] = net
    
          # mixed_8: 8 x 8 x 1280.
          with tf.variable_scope('Mixed_7a'):
            with tf.variable_scope('Branch_0'):
              branch_0 = slim.conv2d(net, 192, [1, 1], scope='Conv2d_0a_1x1')
              branch_0 = slim.conv2d(branch_0, 320, [3, 3], stride=2,
                                     padding='VALID', scope='Conv2d_1a_3x3')
            with tf.variable_scope('Branch_1'):
              branch_1 = slim.conv2d(net, 192, [1, 1], scope='Conv2d_0a_1x1')
              branch_1 = slim.conv2d(branch_1, 192, [1, 7], scope='Conv2d_0b_1x7')
              branch_1 = slim.conv2d(branch_1, 192, [7, 1], scope='Conv2d_0c_7x1')
              branch_1 = slim.conv2d(branch_1, 192, [3, 3], stride=2,
                                     padding='VALID', scope='Conv2d_1a_3x3')
            with tf.variable_scope('Branch_2'):
              branch_2 = slim.max_pool2d(net, [3, 3], stride=2, padding='VALID',
                                         scope='MaxPool_1a_3x3')
            net = tf.concat([branch_0, branch_1, branch_2], 3)
          # mixed_9: 8 x 8 x 2048.
          with tf.variable_scope('Mixed_7b'):
            with tf.variable_scope('Branch_0'):
              branch_0 = slim.conv2d(net, 320, [1, 1], scope='Conv2d_0a_1x1')
            with tf.variable_scope('Branch_1'):
              branch_1 = slim.conv2d(net, 384, [1, 1], scope='Conv2d_0a_1x1')
              branch_1 = tf.concat([
                  slim.conv2d(branch_1, 384, [1, 3], scope='Conv2d_0b_1x3'),
                  slim.conv2d(branch_1, 384, [3, 1], scope='Conv2d_0b_3x1')], 3)
            with tf.variable_scope('Branch_2'):
              branch_2 = slim.conv2d(net, 448, [1, 1], scope='Conv2d_0a_1x1')
              branch_2 = slim.conv2d(
                  branch_2, 384, [3, 3], scope='Conv2d_0b_3x3')
              branch_2 = tf.concat([
                  slim.conv2d(branch_2, 384, [1, 3], scope='Conv2d_0c_1x3'),
                  slim.conv2d(branch_2, 384, [3, 1], scope='Conv2d_0d_3x1')], 3)
            with tf.variable_scope('Branch_3'):
              branch_3 = slim.avg_pool2d(net, [3, 3], scope='AvgPool_0a_3x3')
              branch_3 = slim.conv2d(
                  branch_3, 192, [1, 1], scope='Conv2d_0b_1x1')
            net = tf.concat([branch_0, branch_1, branch_2, branch_3], 3)
    
          # mixed_10: 8 x 8 x 2048.
          with tf.variable_scope('Mixed_7c'):
            with tf.variable_scope('Branch_0'):
              branch_0 = slim.conv2d(net, 320, [1, 1], scope='Conv2d_0a_1x1')
            with tf.variable_scope('Branch_1'):
              branch_1 = slim.conv2d(net, 384, [1, 1], scope='Conv2d_0a_1x1')
              branch_1 = tf.concat([
                  slim.conv2d(branch_1, 384, [1, 3], scope='Conv2d_0b_1x3'),
                  slim.conv2d(branch_1, 384, [3, 1], scope='Conv2d_0c_3x1')], 3)
            with tf.variable_scope('Branch_2'):
              branch_2 = slim.conv2d(net, 448, [1, 1], scope='Conv2d_0a_1x1')
              branch_2 = slim.conv2d(
                  branch_2, 384, [3, 3], scope='Conv2d_0b_3x3')
              branch_2 = tf.concat([
                  slim.conv2d(branch_2, 384, [1, 3], scope='Conv2d_0c_1x3'),
                  slim.conv2d(branch_2, 384, [3, 1], scope='Conv2d_0d_3x1')], 3)
            with tf.variable_scope('Branch_3'):
              branch_3 = slim.avg_pool2d(net, [3, 3], scope='AvgPool_0a_3x3')
              branch_3 = slim.conv2d(
                  branch_3, 192, [1, 1], scope='Conv2d_0b_1x1')
            net = tf.concat([branch_0, branch_1, branch_2, branch_3], 3)
          return net, end_points
    
    
    def inception_v3(inputs,
                     num_classes=1000,
                     is_training=True,
                     dropout_keep_prob=0.8,
                     prediction_fn=slim.softmax,
                     spatial_squeeze=True,
                     reuse=None,
                     scope='InceptionV3'):
    
      with tf.variable_scope(scope, 'InceptionV3', [inputs, num_classes],
                             reuse=reuse) as scope:
        with slim.arg_scope([slim.batch_norm, slim.dropout],
                            is_training=is_training):
          net, end_points = inception_v3_base(inputs, scope=scope)
    
          # Auxiliary Head logits
          with slim.arg_scope([slim.conv2d, slim.max_pool2d, slim.avg_pool2d],
                              stride=1, padding='SAME'):
            aux_logits = end_points['Mixed_6e']
            with tf.variable_scope('AuxLogits'):
              aux_logits = slim.avg_pool2d(
                  aux_logits, [5, 5], stride=3, padding='VALID',
                  scope='AvgPool_1a_5x5')
              aux_logits = slim.conv2d(aux_logits, 128, [1, 1],
                                       scope='Conv2d_1b_1x1')
    
              # Shape of feature map before the final layer.
              aux_logits = slim.conv2d(
                  aux_logits, 768, [5,5],
                  weights_initializer=trunc_normal(0.01),
                  padding='VALID', scope='Conv2d_2a_5x5')
              aux_logits = slim.conv2d(
                  aux_logits, num_classes, [1, 1], activation_fn=None,
                  normalizer_fn=None, weights_initializer=trunc_normal(0.001),
                  scope='Conv2d_2b_1x1')
              if spatial_squeeze:
                aux_logits = tf.squeeze(aux_logits, [1, 2], name='SpatialSqueeze')
              end_points['AuxLogits'] = aux_logits
    
          # Final pooling and prediction
          with tf.variable_scope('Logits'):
            net = slim.avg_pool2d(net, [8, 8], padding='VALID',
                                  scope='AvgPool_1a_8x8')
            # 1 x 1 x 2048
            net = slim.dropout(net, keep_prob=dropout_keep_prob, scope='Dropout_1b')
            end_points['PreLogits'] = net
            # 2048
            logits = slim.conv2d(net, num_classes, [1, 1], activation_fn=None,
                                 normalizer_fn=None, scope='Conv2d_1c_1x1')
            if spatial_squeeze:
              logits = tf.squeeze(logits, [1, 2], name='SpatialSqueeze')
            # 1000
          end_points['Logits'] = logits
          end_points['Predictions'] = prediction_fn(logits, scope='Predictions')
      return logits, end_points
    
    
    def inception_v3_arg_scope(weight_decay=0.00004,
                               stddev=0.1,
                               batch_norm_var_collection='moving_vars'):
    
      batch_norm_params = {
          'decay': 0.9997,
          'epsilon': 0.001,
          'updates_collections': tf.GraphKeys.UPDATE_OPS,
          'variables_collections': {
              'beta': None,
              'gamma': None,
              'moving_mean': [batch_norm_var_collection],
              'moving_variance': [batch_norm_var_collection],
          }
      }
    
      with slim.arg_scope([slim.conv2d, slim.fully_connected],
                          weights_regularizer=slim.l2_regularizer(weight_decay)):
        with slim.arg_scope(
            [slim.conv2d],
            weights_initializer=trunc_normal(stddev),
            activation_fn=tf.nn.relu,
            normalizer_fn=slim.batch_norm,
            normalizer_params=batch_norm_params) as sc:
          return sc
    
      
    from datetime import datetime
    import math
    import time
    def time_tensorflow_run(session, target, info_string):
        num_steps_burn_in = 10
        total_duration = 0.0
        total_duration_squared = 0.0
        for i in range(num_batches + num_steps_burn_in):
            start_time = time.time()
            _ = session.run(target)
            duration = time.time() - start_time
            if i >= num_steps_burn_in:
                if not i % 10:
                    print ('%s: step %d, duration = %.3f' %
                           (datetime.now(), i - num_steps_burn_in, duration))
                total_duration += duration
                total_duration_squared += duration * duration
        mn = total_duration / num_batches
        vr = total_duration_squared / num_batches - mn * mn
        sd = math.sqrt(vr)
        print ('%s: %s across %d steps, %.3f +/- %.3f sec / batch' %
               (datetime.now(), info_string, num_batches, mn, sd))
        
    batch_size = 32
    height, width = 299, 299
    inputs = tf.random_uniform((batch_size, height, width, 3))
    with slim.arg_scope(inception_v3_arg_scope()):
      logits, end_points = inception_v3(inputs, is_training=False)
      
    init = tf.global_variables_initializer()
    sess = tf.Session()
    sess.run(init)  
    num_batches=100
    time_tensorflow_run(sess, logits, "Forward")
    

    相关文章

      网友评论

        本文标题:2018-08-09GoogleInceptionV3

        本文链接:https://www.haomeiwen.com/subject/qrbcbftx.html