美文网首页
249. 统计前面比自己小的数的个数

249. 统计前面比自己小的数的个数

作者: 6默默Welsh | 来源:发表于2018-01-29 17:32 被阅读12次

描述

给定一个整数数组(下标由 0 到 n-1, n 表示数组的规模,取值范围由 0 到10000)。对于数组中的每个 ai 元素,请计算 ai 前的数中比它小的元素的数量。

注意事项

We suggest you finish problem Segment Tree Build, Segment Tree Query II and Count of Smaller Number first.

样例

对于数组[1,2,7,8,5] ,返回 [0,1,2,3,2]

思路

原数组中最大值为 max,以 max 为长度建立新的数组,原数组的值为新数组的下标,新数组的值即为原数组值出现的次数,此时求原数组 ai 前数中比它小的元素数量的问题转化为了求新数组区间和的问题,但有一点需要说明,算法要一边查询一边修改,同时进行,因为比如 5 在 7 后面,查询 7 前面的数数量不应该包括 5, 如果先全部修改再查询就会把 5 算上

代码

public class Solution {
    /*
     * @param A: an integer array
     * @return: A list of integers includes the index of the first number and the index of the last number
     */
     
    public class SegmentTreeNode {
        public int start;
        public int end;
        public int sum;
        SegmentTreeNode left;
        SegmentTreeNode right;
        public SegmentTreeNode(int start, int end, int sum) {
            this.start = start;
            this.end = end;
            this.sum = sum;
            this.left = null;
            this.right = null;
        }
    }
    
    
    public SegmentTreeNode build(int start, int end) {
        if (start > end) {
            return null;
        }
        
        if (start == end) {
            return new SegmentTreeNode(start, end, 0);
        }
        
        SegmentTreeNode root = new SegmentTreeNode(start, end, 0);
        int mid = start + (end - start) / 2;
        root.left = build(start, mid);
        root.right = build(mid + 1, end);
        return root;
    }
    
    public int query(SegmentTreeNode root, int start, int end) {
        if (start <= root.start && root.end <= end) {
            return root.sum;
        }
        
        int mid = root.start + (root.end - root.start) / 2;
        int ans = 0;
        if (start <= mid) {
            ans += query(root.left, start, end);
        }
        if (mid < end) {
            ans += query(root.right, start, end);
        }
        return ans;
    }
    
    public void modify(SegmentTreeNode root, int index, int value) {
        if (root.start == root.end && root.start == index) {
            // 此处有个加号,代表每次执行修改操作实际上数组元素出现次数 + 1
            // 这也是考虑出现重复元素的情形,比如 [1, 1, 2, 3, 7], 查询 7 前面的元素,1 出现了两次
            root.sum += value;
            return;
        }
        
        int mid = root.start + (root.end - root.start) / 2;
        if (index <= mid) {
            modify(root.left, index, value);
        } else {
            modify(root.right, index, value);
        }
        
        root.sum = root.left.sum + root.right.sum;
    }
    
    SegmentTreeNode root;
    public List<Integer> countOfSmallerNumberII(int[] A) {
        root = build(0, 10000);
        List<Integer> list = new ArrayList<>();
        int res;
        for (int i = 0; i < A.length; i++) {
            // res 赋值为 0 要在for 中间,如果在 for循环外在 A[i] != 0时没问题
            // 但每当 A[i] = 0 时,res 是上一次查询的值,并不是 A[i] = 0 时对应的 0 值
            res = 0;
            if (A[i] > 0) {
                res = query(root, 0 , A[i] - 1);
                
            }
            modify(root, A[i], 1);
            list.add(res);
        }
        
        return list;

    }
}
  1. 写法2
public class Solution {
   /**
     * @param A: An integer array
     * @return: Count the number of element before this element 'ai' is 
     *          smaller than it and return count number array
     */ 
    class SegmentTreeNode {
        public int start, end;
        public int count;
        public SegmentTreeNode left, right;
        public SegmentTreeNode(int start, int end, int count) {
              this.start = start;
              this.end = end;
              this.count = count;
              this.left = this.right = null;
        }
    }
    SegmentTreeNode root;
    public SegmentTreeNode build(int start, int end) {
        // write your code here
        if(start > end) {  // check core case
            return null;
        }
        
        SegmentTreeNode root = new SegmentTreeNode(start, end, 0);
        
        if(start != end) {
            int mid = (start + end) / 2;
            root.left = build(start, mid);
            root.right = build(mid+1, end);
        } else {
            root.count =  0;
        }
        return root;
    }
    public int querySegmentTree(SegmentTreeNode root, int start, int end) {
        // write your code here
        if(start == root.start && root.end == end) { // 相等 
            return root.count;
        }
        
        
        int mid = (root.start + root.end)/2;
        int leftcount = 0, rightcount = 0;
        // 左子区
        if(start <= mid) {
            if( mid < end) { // 分裂 
                leftcount =  querySegmentTree(root.left, start, mid);
            } else { // 包含 
                leftcount = querySegmentTree(root.left, start, end);
            }
        }
        // 右子区
        if(mid < end) { // 分裂 3
            if(start <= mid) {
                rightcount = querySegmentTree(root.right, mid+1, end);
            } else { //  包含 
                rightcount = querySegmentTree(root.right, start, end);
            } 
        }  
        // else 就是不相交
        return leftcount + rightcount;
    }
    public void modifySegmentTree(SegmentTreeNode root, int index, int value) {
        // write your code here
        if(root.start == index && root.end == index) { // 查找到
            root.count += value;
            return;
        }
        
        // 查询
        int mid = (root.start + root.end) / 2;
        if(root.start <= index && index <=mid) {
            modifySegmentTree(root.left, index, value);
        }
        
        if(mid < index && index <= root.end) {
            modifySegmentTree(root.right, index, value);
        }
        //更新
        root.count = root.left.count + root.right.count;
    }
    public List<Integer> countOfSmallerNumberII(int[] A) {
        // write your code here
        root = build(0, 10000);
        List<Integer> ans = new ArrayList<Integer>();
        int res;
        for (int i = 0; i < A.length; i++) {
            res = 0;
            if (A[i] > 0) { 
                // 查询 A[i] 前面的比它小的元素的数量,所以从 0 查到 A[i] - 1
                res = querySegmentTree(root, 0, A[i]-1);
            }
            modifySegmentTree(root, A[i], 1);
            ans.add(res);
        }
        return ans;
    }
}

相关文章

网友评论

      本文标题:249. 统计前面比自己小的数的个数

      本文链接:https://www.haomeiwen.com/subject/jfwxzxtx.html