极端值建模和估算是各种应用领域的重要挑战,例如环境,水文,金融,精算科学。
样本的极端部分可能非常重要。也就是说,它可能表现出更大的潜在风险,例如高浓度的空气污染物,洪水,极端索赔规模。
一般而言,极端之建模有三个方面:
-
Univariate Extreme Value Theory:
单变量极值理论。 -
Bivariate Extreme Value Theory:
双变量极值理论
- Multivariate Extreme Value Theory:
多变量极值理论
与极值相关的绘图:
image.png image.png经典的书籍以及文章
- E. Gilleland, M. Ribatet, A. Stephenson (2013). A Software Review for Extreme Value Analysis, Extremes , 16 , 103-119.
- R.-D. Reiss, M. Thomas (2007). Statistical Analysis of Extreme Values with Applications to Insurance, Finance, Hydrology and Other Fields , Springer-Verlag.
- L. de Haan, A. Ferreira (2006). Extreme Value Theory: An Introduction , Springer-Verlag.
- J. Beirlant, Y. Goegebeur, J. Teugels, J. Segers (2004). Statistics of Extremes: Theory and Applications , John Wiley & Sons.
- B. Finkenstaedt, H. Rootzen (2004). Extreme Values in Finance, Telecommunications, and the Environment , Chapman & Hall/CRC.
- S. Coles (2001). An Introduction to Statistical Modeling of Extreme Values , Springer-Verlag.
- P. Embrechts, C. Klueppelberg, T. Mikosch (1997). Modelling Extremal Events for Insurance and Finance , Springer-Verlag.
- S.I. Resnick (1987). Extreme Values, Regular Variation and Point Processes , Springer-Verlag.
- Smith, R.L. (1987). Approximations in extreme value theory. Technical report 205, Center for Stochastic Process, University of North Carolina, 1–34.
- Suveges (2007) Likelihood estimation of the extremal index. Extremes, 10(1), 41-55.
- Suveges and Davison (2010), Model misspecification in peaks over threshold analysis. Annals of Applied Statistics, 4(1), 203-221.
网友评论