TextRNN

作者: Jarkata | 来源:发表于2021-05-13 12:56 被阅读0次

本文为转载,原文链接: https://wmathor.com/index.php/archives/1446/

本文介绍一下如何使用 PyTorch 复现 TextRNN,实现预测一句话的下一个词

参考这篇论文 Finding Structure in Time(1990),如果你对 RNN 有一定的了解,实际上不用看,仔细看我代码如何实现即可。如果你对 RNN 不太了解,请仔细阅读我这篇文章 RNN Layer,结合 PyTorch 讲的很详细

现在问题的背景是,我有 n 句话,每句话都由且仅由 3 个单词组成。我要做的是,将每句话的前两个单词作为输入,最后一词作为输出,训练一个 RNN 模型

导库

'''
  code by Tae Hwan Jung(Jeff Jung) @graykode, modify by wmathor
'''
import torch
import numpy as np
import torch.nn as nn
import torch.optim as optim
import torch.utils.data as Data

dtype = torch.FloatTensor

准备数据

sentences = [ "i like dog", "i love coffee", "i hate milk"]

word_list = " ".join(sentences).split()
vocab = list(set(word_list))
word2idx = {w: i for i, w in enumerate(vocab)}
idx2word = {i: w for i, w in enumerate(vocab)}
n_class = len(vocab)

预处理数据,构建 Dataset,定义 DataLoader,输入数据用 one-hot 编码

# TextRNN Parameter
batch_size = 2
n_step = 2 # number of cells(= number of Step)
n_hidden = 5 # number of hidden units in one cell

def make_data(sentences):
    input_batch = []
    target_batch = []

    for sen in sentences:
        word = sen.split()
        input = [word2idx[n] for n in word[:-1]]
        target = word2idx[word[-1]]

        input_batch.append(np.eye(n_class)[input])
        target_batch.append(target)

    return input_batch, target_batch

input_batch, target_batch = make_data(sentences)
input_batch, target_batch = torch.Tensor(input_batch), torch.LongTensor(target_batch)
dataset = Data.TensorDataset(input_batch, target_batch)
loader = Data.DataLoader(dataset, batch_size, True)

以上的代码我想大家应该都没有问题,接下来就是定义网络架构

class TextRNN(nn.Module):
    def __init__(self):
        super(TextRNN, self).__init__()
        self.rnn = nn.RNN(input_size=n_class, hidden_size=n_hidden)
        # fc
        self.fc = nn.Linear(n_hidden, n_class)

    def forward(self, hidden, X):
        # X: [batch_size, n_step, n_class]
        X = X.transpose(0, 1) # X : [n_step, batch_size, n_class]
        out, hidden = self.rnn(X, hidden)
        # out : [n_step, batch_size, num_directions(=1) * n_hidden]
        # hidden : [num_layers(=1) * num_directions(=1), batch_size, n_hidden]
        out = out[-1] # [batch_size, num_directions(=1) * n_hidden] 
        model = self.fc(out)
        return model

model = TextRNN()
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)

以上代码每一步都值得说一下,首先是 nn.RNN(input_size, hidden_size)的两个参数,input_size 表示每个词的编码维度,由于我是用的 one-hot 编码,而不是 WordEmbedding,所以 input_size 就等于词库的大小 len(vocab),即 n_class。然后是 hidden_size,这个参数没有固定的要求,你想将输入数据的维度转为多少维,就设定多少

对于通常的神经网络来说,输入数据的第一个维度一般都是 batch_size。而 PyTorch 中 nn.RNN() 要求将 batch_size 放在第二个维度上,所以需要使用 x.transpose(0, 1) 将输入数据的第一个维度和第二个维度互换

然后是 rnn 的输出,rnn 会返回两个结果,即上面代码的 out 和 hidden,关于这两个变量的区别,我在之前的博客也提到过了,如果不清楚,可以看我上面提到的 RNN Layer 这篇博客。这里简单说就是,out 指的是下图的红框框起来的所有值;hidden 指的是下图蓝框框起来的所有值。我们需要的是最后时刻的最后一层输出,即 Y_3的值,所以使用 out=out[-1] 将其获取

剩下的部分就比较简单了,训练测试即可

# Training
for epoch in range(5000):
    for x, y in loader:
      # hidden : [num_layers * num_directions, batch, hidden_size]
      hidden = torch.zeros(1, x.shape[0], n_hidden)
      # x : [batch_size, n_step, n_class]
      pred = model(hidden, x)

      # pred : [batch_size, n_class], y : [batch_size] (LongTensor, not one-hot)
      loss = criterion(pred, y)
      if (epoch + 1) % 1000 == 0:
          print('Epoch:', '%04d' % (epoch + 1), 'cost =', '{:.6f}'.format(loss))

      optimizer.zero_grad()
      loss.backward()
      optimizer.step()
    
input = [sen.split()[:2] for sen in sentences]
# Predict
hidden = torch.zeros(1, len(input), n_hidden)
predict = model(hidden, input_batch).data.max(1, keepdim=True)[1]
print([sen.split()[:2] for sen in sentences], '->', [idx2word[n.item()] for n in predict.squeeze()])

完整代码:

'''
  code by Tae Hwan Jung(Jeff Jung) @graykode, modify by wmathor
'''
import torch
import numpy as np
import torch.nn as nn
import torch.optim as optim
import torch.utils.data as Data

dtype = torch.FloatTensor

sentences = [ "i like dog", "i love coffee", "i hate milk"]

word_list = " ".join(sentences).split()
vocab = list(set(word_list))
word2idx = {w: i for i, w in enumerate(vocab)}
idx2word = {i: w for i, w in enumerate(vocab)}
n_class = len(vocab)

# TextRNN Parameter
batch_size = 2
n_step = 2 # number of cells(= number of Step)
n_hidden = 5 # number of hidden units in one cell

def make_data(sentences):
    input_batch = []
    target_batch = []

    for sen in sentences:
        word = sen.split()
        input = [word2idx[n] for n in word[:-1]]
        target = word2idx[word[-1]]

        input_batch.append(np.eye(n_class)[input])
        target_batch.append(target)

    return input_batch, target_batch

input_batch, target_batch = make_data(sentences)
input_batch, target_batch = torch.Tensor(input_batch), torch.LongTensor(target_batch)
dataset = Data.TensorDataset(input_batch, target_batch)
loader = Data.DataLoader(dataset, batch_size, True)

class TextRNN(nn.Module):
    def __init__(self):
        super(TextRNN, self).__init__()
        self.rnn = nn.RNN(input_size=n_class, hidden_size=n_hidden)
        # fc
        self.fc = nn.Linear(n_hidden, n_class)

    def forward(self, hidden, X):
        # X: [batch_size, n_step, n_class]
        X = X.transpose(0, 1) # X : [n_step, batch_size, n_class]
        out, hidden = self.rnn(X, hidden)
        # out : [n_step, batch_size, num_directions(=1) * n_hidden]
        # hidden : [num_layers(=1) * num_directions(=1), batch_size, n_hidden]
        out = out[-1] # [batch_size, num_directions(=1) * n_hidden] ⭐
        model = self.fc(out)
        return model

model = TextRNN()
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)

# Training
for epoch in range(5000):
    for x, y in loader:
      # hidden : [num_layers * num_directions, batch, hidden_size]
      hidden = torch.zeros(1, x.shape[0], n_hidden)
      # x : [batch_size, n_step, n_class]
      pred = model(hidden, x)

      # pred : [batch_size, n_class], y : [batch_size] (LongTensor, not one-hot)
      loss = criterion(pred, y)
      if (epoch + 1) % 1000 == 0:
          print('Epoch:', '%04d' % (epoch + 1), 'cost =', '{:.6f}'.format(loss))

      optimizer.zero_grad()
      loss.backward()
      optimizer.step()
  
input = [sen.split()[:2] for sen in sentences]
# Predict
hidden = torch.zeros(1, len(input), n_hidden)
predict = model(hidden, input_batch).data.max(1, keepdim=True)[1]
print([sen.split()[:2] for sen in sentences], '->', [idx2word[n.item()] for n in predict.squeeze()])

相关文章

  • TextRNN

    论文:Recurrent Neural Network for TextClassification with M...

  • TextRNN

    本文为转载,原文链接: https://wmathor.com/index.php/archives/1446/[...

  • 五、深度学习文本分类textRNN

    原理讲解 TextRNN相关论文:Recurrent Neural Network for Text Classi...

  • 文本分类总结

    一、TextCNN→TextRNN→TextBiRNN→TextRCNN→Text-ATT-BI-RNN→HAN ...

  • TextRNN学习之路

    以下为个人学习TextRNN的学习历程(仅作为本人学习使用,如有侵权请私信) 未学习前的知识储备 传统机器学习的算...

  • 六、TextBiRNN

    原理讲解 TextBiRNN是基于TextRNN的改进版本,将网络结构中的RNN层改成双向(Biderection...

  • TextRNN用于文本分类

    1.单向RNN结构 上述公式中,权重矩阵U、V、W共享 2.双向RNN(Bidirection-RNN)结构 双向...

  • nlp入门笔记——Task 5 word2vec相关知识

    学习目标 学习word2vec的使用和基础原理 学习使用TextCNN、TextRNN进行文本表示 学习使用HAN...

网友评论

      本文标题:TextRNN

      本文链接:https://www.haomeiwen.com/subject/jgkadltx.html