美文网首页嵌牛IT观察
卷积神经网络中十大拍案叫绝的操作

卷积神经网络中十大拍案叫绝的操作

作者: 单行车jing | 来源:发表于2017-12-18 01:12 被阅读0次

    【嵌牛导读】:CNN从2012年的AlexNet发展至今,科学家们发明出各种各样的CNN模型,一个比一个深,一个比一个准确,一个比一个轻量。本文对近几年一些具有变革性的工作进行简单盘点,从这些充满革新性的工作中探讨日后的CNN变革方向。

    【嵌牛鼻子】:CNN

    【嵌牛提问】:卷积神经网络的变革方向有哪些?

    【嵌牛正文】:

    一、卷积只能在同一组进行吗?-- Group convolution

    Group convolution 分组卷积,最早在AlexNet中出现,由于当时的硬件资源有限,训练AlexNet时卷积操作不能全部放在同一个GPU处理,因此作者把feature maps分给多个GPU分别进行处理,最后把多个GPU的结果进行融合。

    卷积神经网络中十大拍案叫绝的操作

    二、卷积核一定越大越好?-- 3×3卷积核

    AlexNet中用到了一些非常大的卷积核,比如11×11、5×5卷积核,之前人们的观念是,卷积核越大,receptive field(感受野)越大,看到的图片信息越多,因此获得的特征越好。虽说如此,但是大的卷积核会导致计算量的暴增,不利于模型深度的增加,计算性能也会降低。于是在VGG(最早使用)、Inception网络中,利用2个3×3卷积核的组合比1个5×5卷积核的效果更佳,同时参数量(3×3×2+1 VS 5×5×1+1)被降低,因此后来3×3卷积核被广泛应用在各种模型中。

    卷积神经网络中十大拍案叫绝的操作

    三、每层卷积只能用一种尺寸的卷积核?-- Inception结构

    传统的层叠式网络,基本上都是一个个卷积层的堆叠,每层只用一个尺寸的卷积核,例如VGG结构中使用了大量的3×3卷积层。事实上,同一层feature map可以分别使用多个不同尺寸的卷积核,以获得不同尺度的特征,再把这些特征结合起来,得到的特征往往比使用单一卷积核的要好,谷歌的GoogleNet,或者说Inception系列的网络,就使用了多个卷积核的结构:

    卷积神经网络中十大拍案叫绝的操作

    最初版本的Inception结构

    如上图所示,一个输入的feature map分别同时经过1×1、3×3、5×5的卷积核的处理,得出的特征再组合起来,获得更佳的特征。但这个结构会存在一个严重的问题:参数量比单个卷积核要多很多,如此庞大的计算量会使得模型效率低下。这就引出了一个新的结构:

    四、怎样才能减少卷积层参数量?-- Bottleneck

    发明GoogleNet的团队发现,如果仅仅引入多个尺寸的卷积核,会带来大量的额外的参数,受到Network In Network中1×1卷积核的启发,为了解决这个问题,他们往Inception结构中加入了一些1×1的卷积核,如图所示:

    卷积神经网络中十大拍案叫绝的操作

    加入1×1卷积核的Inception结构

    卷积神经网络中十大拍案叫绝的操作

    根据上图,我们来做个对比计算,假设输入feature map的维度为256维,要求输出维度也是256维。有以下两种操作:

    256维的输入直接经过一个3×3×256的卷积层,输出一个256维的feature map,那么参数量为:256×3×3×256 = 589,824

    256维的输入先经过一个1×1×64的卷积层,再经过一个3×3×64的卷积层,最后经过一个1×1×256的卷积层,输出256维,参数量为:256×1×1×64 + 64×3×3×64 + 64×1×1×256 = 69,632。足足把第一种操作的参数量降低到九分之一!

    1×1卷积核也被认为是影响深远的操作,往后大型的网络为了降低参数量都会应用上1×1卷积核。

    五、越深的网络就越难训练吗?-- Resnet残差网络

    传统的卷积层层叠网络会遇到一个问题,当层数加深时,网络的表现越来越差,很大程度上的原因是因为当层数加深时,梯度消散得越来越严重,以至于反向传播很难训练到浅层的网络。为了解决这个问题,何凯明大神想出了一个“残差网络”,使得梯度更容易地流动到浅层的网络当中去,而且这种“skip connection”能带来更多的好处,这里可以参考一个PPT:极深网络

    六、卷积操作时必须同时考虑通道和区域吗?-- DepthWise操作

    标准的卷积过程可以看上图,一个2×2的卷积核在卷积时,对应图像区域中的所有通道均被同时考虑,问题在于,为什么一定要同时考虑图像区域和通道?我们为什么不能把通道和空间区域分开考虑?Xception网络就是基于以上的问题发明而来。我们首先对每一个通道进行各自的卷积操作,有多少个通道就有多少个过滤器。得到新的通道feature maps之后,这时再对这批新的通道feature maps进行标准的1×1跨通道卷积操作。这种操作被称为 “DepthWise convolution” ,缩写“DW”。

    因此,一个depthwise操作比标准的卷积操作降低不少的参数量,同时论文中指出这个模型得到了更好的分类效果。

    七、分组卷积能否对通道进行随机分组?-- ShuffleNet

    在AlexNet的Group Convolution当中,特征的通道被平均分到不同组里面,最后再通过两个全连接层来融合特征,这样一来,就只能在最后时刻才融合不同组之间的特征,对模型的泛化性是相当不利的。为了解决这个问题,ShuffleNet在每一次层叠这种Group conv层前,都进行一次channel shuffle,shuffle过的通道被分配到不同组当中。进行完一次group conv之后,再一次channel shuffle,然后分到下一层组卷积当中,以此循环。

    经过channel shuffle之后,Group conv输出的特征能考虑到更多通道,输出的特征自然代表性就更高。另外,AlexNet的分组卷积,实际上是标准卷积操作,而在ShuffleNet里面的分组卷积操作是depthwise卷积,因此结合了通道洗牌和分组depthwise卷积的ShuffleNet,能得到超少量的参数以及超越mobilenet、媲美AlexNet的准确率!

    八、通道间的特征都是平等的吗? -- SEnet

    无论是在Inception、DenseNet或者ShuffleNet里面,我们对所有通道产生的特征都是不分权重直接结合的,那为什么要认为所有通道的特征对模型的作用就是相等的呢? 这是一个好问题,于是,ImageNet2017 冠军SEnet就出来了。

    一组特征在上一层被输出,这时候分两条路线,第一条直接通过,第二条首先进行Squeeze操作(Global Average Pooling),把每个通道2维的特征压缩成一个1维,从而得到一个特征通道向量(每个数字代表对应通道的特征)。然后进行Excitation操作,把这一列特征通道向量输入两个全连接层和sigmoid,建模出特征通道间的相关性,得到的输出其实就是每个通道对应的权重,把这些权重通过Scale乘法通道加权到原来的特征上(第一条路),这样就完成了特征通道的权重分配。

    九、能否让固定大小的卷积核看到更大范围的区域?-- Dilated convolution

    标准的3×3卷积核只能看到对应区域3×3的大小,但是为了能让卷积核看到更大的范围,dilated conv使其成为了可能。dilated conv原论文中的结构如图所示:

    卷积神经网络中十大拍案叫绝的操作

    上图b可以理解为卷积核大小依然是3×3,但是每个卷积点之间有1个空洞,也就是在绿色7×7区域里面,只有9个红色点位置作了卷积处理,其余点权重为0。这样即使卷积核大小不变,但它看到的区域变得更大了。详细解释可以看知乎回答:如何理解空洞卷积(dilated convolution)?

    十、卷积核形状一定是矩形吗?-- Deformable convolution 可变形卷积核

    传统的卷积核一般都是长方形或正方形,但MSRA提出了一个相当反直觉的见解,认为卷积核的形状可以是变化的,变形的卷积核能让它只看感兴趣的图像区域 ,这样识别出来的特征更佳。

    卷积神经网络中十大拍案叫绝的操作

    启发与思考

    现在越来越多的CNN模型从巨型网络到轻量化网络一步步演变,模型准确率也越来越高。现在工业界追求的重点已经不是准确率的提升(因为都已经很高了),都聚焦于速度与准确率的trade off,都希望模型又快又准。因此从原来AlexNet、VGGnet,到体积小一点的Inception、Resnet系列,到目前能移植到移动端的mobilenet、ShuffleNet(体积能降低到0.5mb!),我们可以看到这样一些趋势:

    卷积核方面:

    大卷积核用多个小卷积核代替;

    单一尺寸卷积核用多尺寸卷积核代替;

    固定形状卷积核趋于使用可变形卷积核;

    使用1×1卷积核(bottleneck结构)。

    卷积层通道方面:

    标准卷积用depthwise卷积代替;

    使用分组卷积;

    分组卷积前使用channel shuffle;

    通道加权计算。

    卷积层连接方面:

    使用skip connection,让模型更深;

    densely connection,使每一层都融合上其它层的特征输出(DenseNet)

    启发

    类比到通道加权操作,卷积层跨层连接能否也进行加权处理?bottleneck + Group conv + channel shuffle + depthwise的结合会不会成为以后降低参数量的标准配置?

    相关文章

      网友评论

        本文标题:卷积神经网络中十大拍案叫绝的操作

        本文链接:https://www.haomeiwen.com/subject/jgmapxtx.html