美文网首页
为什么是GCN(转)

为什么是GCN(转)

作者: 华灯初上月影重 | 来源:发表于2019-02-17 22:39 被阅读0次

一、GCN中的Graph指什么?为什么要研究GCN?

CNN是Computer Vision里的大法宝,效果为什么好呢?原因在上面已经分析过了,可以很有效地提取空间特征。但是有一点需要注意:CNN处理的图像或者视频数据中像素点(pixel)是排列成成很整齐的矩阵(如图2所示,也就是很多论文中所提到的Euclidean Structure)。


image

图2 图像矩阵示意图(Euclidean Structure)

与之相对应,科学研究中还有很多Non Euclidean Structure的数据,如图3所示。社交网络、信息网络中有很多类似的结构。

image

图3 社交网络拓扑示意(Non Euclidean Structure)

实际上,这样的网络结构(Non Euclidean Structure)就是图论中抽象意义上的拓扑图。
所以,Graph Convolutional Network中的Graph是指数学(图论)中的用顶点和边建立相应关系的拓扑图。

二、那么为什么要研究GCN?

原因有3:

1、CNN无法处理Non Euclidean Structure的数据,学术上的表达是传统的离散卷积(如问题1中所述)在Non Euclidean Structure的数据上无法保持平移不变性。通俗理解就是在拓扑图中每个顶点的相邻顶点数目都可能不同,那么当然无法用一个同样尺寸的卷积核来进行卷积运算。

2、由于CNN无法处理Non Euclidean Structure的数据,又希望在这样的数据结构(拓扑图)上有效地提取空间特征来进行机器学习,所以GCN成为了研究的重点。

3、读到这里大家可能会想,自己的研究问题中没有拓扑结构的网络,那是不是根本就不会用到GCN呢?其实不然,广义上来讲任何数据在赋范空间内都可以建立拓扑关联,谱聚类就是应用了这样的思想(谱聚类(spectral clustering)原理总结)。所以说拓扑连接是一种广义的数据结构,GCN有很大的应用空间。

综上所述,GCN是要为除CV、NLP之外的任务提供一种处理、研究的模型。


摘录自:https://mp.weixin.qq.com/s/Kb-tAjtPMmndO5EK9bVYdw

相关文章

网友评论

      本文标题:为什么是GCN(转)

      本文链接:https://www.haomeiwen.com/subject/jkyneqtx.html