美文网首页程序员技术干货
jdk8版HashMap红黑树学习笔记

jdk8版HashMap红黑树学习笔记

作者: realqiyan | 来源:发表于2017-04-09 23:27 被阅读0次

    0x00.新老HashMap区别

    本文使用jdk7(1.7.0_79)与 jdk8(1.8.0_45)进行对比,主要学习数据结构区别

    数据结构

    jdk7内部数据结构为数组+链表,通过key的hash值计算数据所在数组下标,多个key的hash相同或hash计算的数组下标相同,但是key值不同时,往链表尾追加Entry。

    transient Entry<K,V>[] table = (Entry<K,V>[]) EMPTY_TABLE;
    
    static class Entry<K,V> implements Map.Entry<K,V> {
        final K key;
        V value;
        Entry<K,V> next;
        int hash;
    }
    

    jdk8内部数据结构为数组+(链表 或 红黑树),通过key的hash值计算数据所在数组下标,多个key的hash相同或hash计算的数组下标相同,但是key值不同时,检查节点是否为树节点,是树节点则往树节点添加,如果是普通节点则往链表尾追加Entry,当链表长度大于8时,则将链表转为红黑树。

    transient Node<K,V>[] table;
    
    static class Node<K,V> implements Map.Entry<K,V> {
        final int hash;
        final K key;
        V value;
        Node<K,V> next;
    }
    
    static final class TreeNode<K,V> extends LinkedHashMap.Entry<K,V> {
        TreeNode<K,V> parent;  // red-black tree links
        TreeNode<K,V> left;
        TreeNode<K,V> right;
        TreeNode<K,V> prev;    // needed to unlink next upon deletion
        boolean red;
    }
    
    //LinkedHashMap.Entry
    static class Entry<K,V> extends HashMap.Node<K,V> {
        Entry<K,V> before, after;
        Entry(int hash, K key, V value, Node<K,V> next) {
            super(hash, key, value, next);
        }
    }
    

    0x01. HashMap.put源码阅读

    源码学习,边看源码边加注释,边debug,边理解。

    public V put(K key, V value) {
        return putVal(hash(key), key, value, false, true);
    }
    
    final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
                   boolean evict) {
        Node<K,V>[] tab; Node<K,V> p; int n, i;
        if ((tab = table) == null || (n = tab.length) == 0)
            //当HashMap的内部table为空时,触发resize()
            n = (tab = resize()).length;
        if ((p = tab[i = (n - 1) & hash]) == null)
            //当通过key的hash值计算数据所在数组下标值为null时直接生成新节点放入桶
            tab[i] = newNode(hash, key, value, null);
        else {
            Node<K,V> e; K k;
            if (p.hash == hash &&
                ((k = p.key) == key || (key != null && key.equals(k))))
                //key完全相同
                e = p;
            else if (p instanceof TreeNode)
                //桶内对象已经时红黑树
                e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
            else {
                //桶内已经存在普通节点则遍历链表,往链表尾部添加节点
                for (int binCount = 0; ; ++binCount) {
                    if ((e = p.next) == null) { //第1个循环是获取第2个节点了(0->root.next)
                        //binCount为0时插入的第二个节点
                        p.next = newNode(hash, key, value, null);
                        //如果链表内的数据已经超过8个则将链表转成红黑树
                        if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
                            //binCount等于7时插入的第9个节点
                            treeifyBin(tab, hash);
                        break;
                    }
                    if (e.hash == hash &&
                        ((k = e.key) == key || (key != null && key.equals(k))))
                        break;
                    p = e;
                }
            }
            if (e != null) { // existing mapping for key
                V oldValue = e.value;
                if (!onlyIfAbsent || oldValue == null)
                    e.value = value;
                afterNodeAccess(e);
                return oldValue;
            }
        }
        ++modCount;
        if (++size > threshold)
            resize();
        afterNodeInsertion(evict);
        return null;
    }
    
    final void treeifyBin(Node<K,V>[] tab, int hash) {
        int n, index; Node<K,V> e;
        //检查tab的长度是否大于等于64,小于则扩容
        if (tab == null || (n = tab.length) < MIN_TREEIFY_CAPACITY)
            resize();
        else if ((e = tab[index = (n - 1) & hash]) != null) {
            //将Node对象转为TreeNode
            TreeNode<K,V> hd = null, tl = null;
            do {
                TreeNode<K,V> p = replacementTreeNode(e, null);
                if (tl == null)
                    hd = p;
                else {
                    p.prev = tl;
                    tl.next = p;
                }
                tl = p;
            } while ((e = e.next) != null);
            if ((tab[index] = hd) != null)
                //将TreeNode链表转成红黑树
                hd.treeify(tab);
        }
    }
    
    final void treeify(Node<K,V>[] tab) {
        TreeNode<K,V> root = null;
        for (TreeNode<K,V> x = this, next; x != null; x = next) {
            next = (TreeNode<K,V>)x.next;
            x.left = x.right = null;
            if (root == null) {
                //root为空时直接第一个元素存入root
                x.parent = null;
                x.red = false;
                root = x;
            }
            else {
                K k = x.key;
                int h = x.hash;
                Class<?> kc = null;
                //往二叉树中插入当前节点
                for (TreeNode<K,V> p = root;;) {
                    int dir, ph;
                    K pk = p.key;
    
                    if ((ph = p.hash) > h)//优先直接比较hash值
                        dir = -1;
                    else if (ph < h)//优先直接比较hash值
                        dir = 1;
                    else if ((kc == null &&
                              (kc = comparableClassFor(k)) == null) || //hash值相同则判断key是否实现Comparable接口
                             (dir = compareComparables(kc, k, pk)) == 0) //实现了Comparable接口则直接比较
                        //没有实现Comparable接口则用System.identityHashCode比较
                        dir = tieBreakOrder(k, pk);
    
                    TreeNode<K,V> xp = p;
                    //检查树节点是否为空,不为空继续比较,直到找到空的节点放入当前节点。
                    if ((p = (dir <= 0) ? p.left : p.right) == null) {
                        x.parent = xp;
                        if (dir <= 0)
                            xp.left = x;
                        else
                            xp.right = x;
                        //进行二叉树平衡操作
                        root = balanceInsertion(root, x);
                        break;
                    }
                }
            }
        }
        //将root接口放入table的第一个元素
        moveRootToFront(tab, root);
    }
    
    static <K,V> TreeNode<K,V> balanceInsertion(TreeNode<K,V> root,
                                                TreeNode<K,V> x) {
        x.red = true;
        for (TreeNode<K,V> xp, xpp, xppl, xppr;;) {
            //判断当前节点的父节点为空 
            if ((xp = x.parent) == null) {
                //则当前节点为root 直接将颜色设置为黑色 
                x.red = false;
                return x;
            }
            else if (!xp.red || (xpp = xp.parent) == null)
                //当前节点父节点为黑色节点 或者当前节点的父节点时root节点
                return root;
            if (xp == (xppl = xpp.left)) {//当前节点的父节点是左子节点(父节点为红色节点)
                if ((xppr = xpp.right) != null && xppr.red) {
                    //当前节点的父节点以及父节点的兄弟节点都是红色 则颜色反转
                    xppr.red = false;
                    xp.red = false;
                    xpp.red = true;
                    x = xpp;
                }
                else {
                    //当前节点为右节点 则先进行左旋
                    if (x == xp.right) {
                        root = rotateLeft(root, x = xp);
                        xpp = (xp = x.parent) == null ? null : xp.parent;
                    }
                    //父节点不为空 则变色 右旋
                    if (xp != null) {
                        xp.red = false;
                        if (xpp != null) {
                            xpp.red = true;
                            root = rotateRight(root, xpp);
                        }
                    }
                }
            }
            else {//当前节点的父节点是右子节点
                if (xppl != null && xppl.red) { 
                    //当前节点的父节点以及父节点的兄弟节点都是红色 则颜色反转
                    xppl.red = false;
                    xp.red = false;
                    xpp.red = true;
                    x = xpp;
                }
                else {
                    //节点在左侧则右旋
                    if (x == xp.left) {
                        root = rotateRight(root, x = xp);
                        xpp = (xp = x.parent) == null ? null : xp.parent;
                    }
                    //父节点不为空 则变色 左旋
                    if (xp != null) {
                        xp.red = false;
                        if (xpp != null) {
                            xpp.red = true;
                            root = rotateLeft(root, xpp);
                        }
                    }
                }
            }
        }
    }
    
    

    0x02. 测试代码

    触发链表转红黑树的测试代码 可直接用来debug

    import java.util.HashMap;
    
    /**
     * Created by qiyan on 2017/4/9.
     */
    public class HashMapTest {
        public static void main(String[] args) throws Exception {
            //map内的数组容量大于等于64 且 链表数量大于8才会进行红黑树转换
            HashMap map = new HashMap(64);
            for (int i = 0; i <= 8; i++) {
                map.put(new HashCodeOneObj(i), i);
            }
            System.out.println(map);
        }
    
        private static class HashCodeOneObj implements Comparable<HashCodeOneObj> {
            private int val;
    
            public HashCodeOneObj(int val) {
                this.val = val;
            }
    
            public int getVal() {
                return val;
            }
    
            @Override
            public int hashCode() {
                return 1; //让所有数据都存入一个桶
            }
    
            @Override
            public int compareTo(HashCodeOneObj o) {
                if (null == o) {
                    return -1;
                }
                return Integer.compare(this.getVal(), o.getVal());
            }
        }
    }
    
    

    链表转红黑树过程示意图:

    红黑树v2(insert-0-8).png HashMap中的红黑树

    相关文章

      网友评论

        本文标题:jdk8版HashMap红黑树学习笔记

        本文链接:https://www.haomeiwen.com/subject/jnhjattx.html