grep()能对向量中特定条件的元素进行查询,默认return为index。grep()语法与grep()大致相似,但默认return为logical。
参考 :https://www.jianshu.com/p/11bbfa8e98c5
grep()
代码如下:
grep(pattern, x, ignore.case = FALSE, perl = FALSE, value = FALSE,
fixed = FALSE, useBytes = FALSE, invert = FALSE)
grep()函数参数:
参数 | 功能 |
---|---|
pattern | 包含正则表达式的字符串 |
x | 寻找匹配的字符向量,或者可以通过字符向量强制转换的对象。支持长向量 |
ignore.case | 如果为FALSE,则模式匹配区分大小写;如果为TRUE,则在匹配期间忽略大小写 |
perl | 如果为TRUE,使用perl匹配的正则表达式 |
value | 如果为FALSE,则返回包含由grep确定的匹配的索引的向量,如果为TRUE,则返回包含匹配元素本身的向量 |
fixed | 如果为TRUE,则pattern是要按原样匹配的字符串 |
useBytes | 如果为TRUE,则匹配是逐字节而不是逐字符完成的 |
invert | 如果为TRUE,则返回不匹配的元素的索引或值 |
R 语言中的正则表达式
正则表达式符号 | 含义 |
---|---|
^ | 匹配一个字符串的开始 |
$ | 匹配一个字符串的结尾 |
. | 匹配除了换行符以外的任一字符 |
* | 匹配所有含有*后的字符 |
? | 匹配所有含有?后的字符 |
+ | 匹配所有含有+后的字符 |
.* | 可以匹配任意字符 |
| | 表示逻辑的或 |
[^] | 表示逻辑的补集 |
[] | 匹配多个字符,如果不使用任何分隔符号,则搜寻这个集合 |
[-] | 匹配一个范围 |
贪婪和懒惰规则
默认情况下是匹配尽可能多的字符,是为贪婪匹配,比如sub("a.b","",c("aabab","eabbe")),默认匹配最长的a开头b结尾的字串,也就是整个字符串。如果要进行懒惰匹配,也就是匹配最短的字串,只需要在后面加个“?”,比如sub("a.?b","",c("aabab","eabbe")),就会匹配最开始找到的最短的a开头b结尾的字串。
grep()函数实例:
1. ^ 的使用:
Protein <- c('TP53','GMPS','CAD','MCM2','MCM3','MCM4',
'MCM5','MCM6','MCM7','TGM1','TGM2','TGM3',
'TGM4','TGM5','TGM6','TGM7','CTPS1','CTPS2',
'GLS','GLS2','NADSYN1')
Results <- grep('^C', Protein, value = T)
Results
image
2. $ 的使用:
Protein <- c('TP53','GMPS','CAD','MCM2','MCM3','MCM4',
'MCM5','MCM6','MCM7','TGM1','TGM2','TGM3',
'TGM4','TGM5','TGM6','TGM7','CTPS1','CTPS2',
'GLS','GLS2','NADSYN1')
Results <- grep('2$', Protein, value = T)
Results
image
3. . 的使用:
Protein <- c('TP53','GMPS','CAD','MCM2','MCM3','MCM4',
'MCM5','MCM6','MCM7','TGM1','TGM2','TGM3',
'TGM4','TGM5','TGM6','TGM7','CTPS1','CTPS2',
'GLS','GLS2','NADSYN1')
Results <- grep('MCM.', Protein, value = T)
Results
image
4. * 的使用:
Protein <- c('TP53','GMPS','CAD','MCM2','MCM3','MCM4',
'MCM5','MCM6','MCM7','TGM1','TGM2','TGM3',
'TGM4','TGM5','TGM6','TGM7','CTPS1','CTPS2',
'GLS','GLS2','NADSYN1','DDB1','DDB2','DAO',
'DDO','DCLRE1C','DLC1')
Results <- grep('*2', Protein, value = T)
Results
image
5. ? 的使用:
Protein <- c('TP53','GMPS','CAD','MCM2','MCM3','MCM4',
'MCM5','MCM6','MCM7','TGM1','TGM2','TGM3',
'TGM4','TGM5','TGM6','TGM7','CTPS1','CTPS2',
'GLS','GLS2','NADSYN1','DDB1','DDB2','DAO',
'DDO','DCLRE1C','DLC1','USP11')
Results <- grep('?D', Protein, value = T)
Results
image
6. + 的使用:
Protein <- c('TP53','GMPS','CAD','MCM2','MCM3','MCM4',
'MCM5','MCM6','MCM7','TGM1','TGM2','TGM3',
'TGM4','TGM5','TGM6','TGM7','CTPS1','CTPS2',
'GLS','GLS2','NADSYN1','DDB1','DDB2','DAO',
'DDO','DCLRE1C','DLC1','USP11')
Results <- grep('+D', Protein, value = T)
Results
image
7. .* 的使用:
Protein <- c('TP53','GMPS','CAD','MCM2','MCM3','MCM4',
'MCM5','MCM6','MCM7','TGM1','TGM2','TGM3',
'TGM4','TGM5','TGM6','TGM7','CTPS1','CTPS2',
'GLS','GLS2','NADSYN1','DDB1','DDB2','DAO',
'DDO','DCLRE1C','DLC1','USP11')
Results <- grep('T.*3', Protein, value = T)
Results
image
8. | 的使用:
Protein <- c('TP53','GMPS','CAD','MCM2','MCM3','MCM4',
'MCM5','MCM6','MCM7','TGM1','TGM2','TGM3',
'TGM4','TGM5','TGM6','TGM7','CTPS1','CTPS2',
'GLS','GLS2','NADSYN1','DDB1','DDB2','DAO',
'DDO','DCLRE1C','DLC1','USP11')
Results <- grep('^T|*3', Protein, value = T)
Results
image
9. [^] 的使用:
Protein <- c('TP53','GMPS','CAD','MCM2','MCM3','MCM4',
'MCM5','MCM6','MCM7','TGM1','TGM2','TGM3',
'TGM4','TGM5','TGM6','TGM7','CTPS1','CTPS2',
'GLS','GLS2','NADSYN1','DDB1','DDB2','DAO',
'DDO','DCLRE1C','DLC1','USP11')
Results <- grep('[^TP53]', Protein, value = T)
Results
image
10. [] 的使用:
Protein <- c('TP53','GMPS','CAD','MCM2','MCM3','MCM4',
'MCM5','MCM6','MCM7','TGM1','TGM2','TGM3',
'TGM4','TGM5','TGM6','TGM7','CTPS1','CTPS2',
'GLS','GLS2','NADSYN1','DDB1','DDB2','DAO',
'DDO','DCLRE1C','DLC1','USP11')
Results <- grep('[4,3,9,6]', Protein, value = T)
Results
image
11. [-] 的使用:
Protein <- c('TP53','GMPS','CAD','MCM2','MCM3','MCM4',
'MCM5','MCM6','MCM7','TGM1','TGM2','TGM3',
'TGM4','TGM5','TGM6','TGM7','CTPS1','CTPS2',
'GLS','GLS2','NADSYN1','DDB1','DDB2','DAO',
'DDO','DCLRE1C','DLC1','USP11')
Results <- grep('[1-3]', Protein, value = T)
Results
image
网友评论