通常训练模型的时候是保存ckpt方便接着训练,但是上线可以保存为pb模型,加载的时候不需要重新定义模型,只用输入输出来调用模型。
import tensorflow as tf
from tensorflow.python.saved_model import builder as saved_model_builder
from tensorflow.python.saved_model import (signature_constants, signature_def_utils, tag_constants, utils)
class model():
def __init__(self):
self.a = tf.placeholder(tf.float32, [None])
self.w = tf.Variable(tf.constant(2.0, shape=[1]), name="w")
b = tf.Variable(tf.constant(0.5, shape=[1]), name="b")
self.y = self.a * self.w + b
#模型保存为ckpt
def save_model():
m = model()
session = tf.Session()
session.run(tf.global_variables_initializer())
update = tf.assign(m.w, [10])
session.run(update)
predict_y = session.run(m.y,feed_dict={m.a:[3.0]})
print(predict_y)
saver = tf.train.Saver()
saver.save(session,"model/model.ckpt")
session.close()
#加载ckpt模型
def load_model():
m = model()
session = tf.Session()
saver = tf.train.Saver()
saver.restore(session, "model/model.ckpt")
predict_y = session.run(m.y, feed_dict={m.a: [3.0]})
print(predict_y)
return session,m
#保存为pb模型
def export_model(session,m):
#只需要修改这一段,定义输入输出,其他保持默认即可
model_signature = signature_def_utils.build_signature_def(
inputs={"input": utils.build_tensor_info(m.a)},
outputs={
"output": utils.build_tensor_info(m.y)},
method_name=signature_constants.PREDICT_METHOD_NAME)
export_path = "pb_model/1"
print("Export the model to {}".format(export_path))
try:
legacy_init_op = tf.group(
tf.tables_initializer(), name='legacy_init_op')
builder = saved_model_builder.SavedModelBuilder(export_path)
builder.add_meta_graph_and_variables(
session, [tag_constants.SERVING],
clear_devices=True,
signature_def_map={
signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY:
model_signature,
},
legacy_init_op=legacy_init_op)
builder.save()
except Exception as e:
print("Fail to export saved model, exception: {}".format(e))
#加载pb模型
def load_pb():
session = tf.Session(graph=tf.Graph())
model_file_path = "pb_model/1"
meta_graph = tf.saved_model.loader.load(session, [tf.saved_model.tag_constants.SERVING], model_file_path)
model_graph_signature = list(meta_graph.signature_def.items())[0][1]
output_tensor_names = []
output_op_names = []
for output_item in model_graph_signature.outputs.items():
output_op_name = output_item[0]
output_op_names.append(output_op_name)
output_tensor_name = output_item[1].name
output_tensor_names.append(output_tensor_name)
print("load model finish!")
sentences = {}
for test_x in [[1],[2],[3],[4],[5]]:
sentences["input"] = test_x
feed_dict_map = {}
for input_item in model_graph_signature.inputs.items():
input_op_name = input_item[0]
input_tensor_name = input_item[1].name
feed_dict_map[input_tensor_name] = sentences[input_op_name]
predict_y = session.run(output_tensor_names, feed_dict=feed_dict_map)
print("predict pb y:",predict_y)
if __name__ == "__main__":
save_model()
session, m = load_model()
export_model(session, m)
load_pb()
save_model 和load_model两个函数要分开执行,第一次注释掉load,只save,第二次load的时候注释掉save。因为声明模型的时候都是用默认图,变量命名会依次是0,1,load的时候名字对应不上。
保存好的pb模型路径文件格式为
image.png
网友评论
sess2=tf.Session(graph2)
def load_model():
… # m = model() 这一行被注释掉了,有问题
… session = tf.Session()
… # saver = tf.train.Saver()
… saver = tf.train.import_meta_graph("model/model.ckpt.meta")
… saver.restore(session, "model/model.ckpt")
… predict_y = session.run(m.y, feed_dict={m.a: [3.0]})
… print(predict_y)
… return session,m