美文网首页
pytorch mnist 框架

pytorch mnist 框架

作者: 电脑配件 | 来源:发表于2019-02-25 18:46 被阅读0次

    炒个冷饭……以后不能再不会写了!!

    import torch
    import torch.nn as nn
    import torch.tensor
    import torch.nn.functional as F
    import torch.optim as optim
    import os
    from torchvision import datasets, transforms
    
    # hyper parameters
    BATCH_SIZE = 5
    HIDDEN_SIZE = 512
    WIDTH = 28
    HEIGHT = 28
    PIC_SIZE = WIDTH * HEIGHT
    LEARNING_RATE = 1e-5
    USE_CUDA = True
    SAVE_PATH = './model/dnn'
    
    # data loader
    train_loader = torch.utils.data.DataLoader(
        datasets.MNIST('./data', train=True, download=True,
                       transform=transforms.Compose([transforms.ToTensor()])  # 将图像转为张量
                       ), batch_size=BATCH_SIZE
    )
    test_loader = torch.utils.data.DataLoader(
        datasets.MNIST('./data', train=False, download=True,
                       transform=transforms.Compose([transforms.ToTensor()])
                       ), batch_size=BATCH_SIZE
    )
    
    
    class NN(torch.nn.Module):
        # the class of your module
        def __init__(self, models):
            super(NN, self).__init__()
            self.models = models
    
        def forward(self, input):
            x = input.reshape([-1, PIC_SIZE])
            for model in self.models:
                x = model(x)
            return x
    
    
    # ModuleList
    models = nn.ModuleList([
        nn.Linear(PIC_SIZE, HIDDEN_SIZE),
        nn.ReLU(),
        nn.Linear(HIDDEN_SIZE, 10),
    ])
    model = NN(models)
    print(model)
    
    # If you have more than one gpu, use it
    if USE_CUDA: model = model.cuda()
    
    optimizer = optim.Adam(model.parameters(), lr=LEARNING_RATE)
    
    
    def train(epoch):
        for i, (source, label) in enumerate(train_loader):
            if USE_CUDA: source, label = source.cuda(), label.cuda()
            out = model(source)
            loss = F.cross_entropy(out, label)
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()
            if i % 100 == 0 and i != 0:
                print('Epoch {}, step {} | loss: {}'.format(epoch, i, loss))
        return
    
    
    def test():
        count = 0
        acc = 0
        for i, (source, label) in enumerate(test_loader):
            if USE_CUDA: source, label = source.cuda(), label.cuda()
            out = model(source)
            _, out = out.max(dim=1)
            acc += BATCH_SIZE - (out - label).nonzero().size()[0]
            count += BATCH_SIZE
        return float(acc) / float(count)
    
    
    if __name__ == '__main__':
        for i in range(1, 10):
            train(i)
            print('Epoch {} | Accuracy {}'.format(i, test()))
            if not os.path.exists(SAVE_PATH): os.makedirs(SAVE_PATH)
            torch.save(model, './model/dnn/checkpoint_{}.pt'.format(i))
    
    

    相关文章

      网友评论

          本文标题:pytorch mnist 框架

          本文链接:https://www.haomeiwen.com/subject/jvtnyqtx.html