美文网首页
Pytorch GoogleNet Fashion-Mnist

Pytorch GoogleNet Fashion-Mnist

作者: hyhchaos | 来源:发表于2018-09-26 22:35 被阅读318次

pytorch 实现 GoogleNet on Fashion-MNIST

from __future__ import print_function
import torch
import time
import torch.nn as nn
import torch.nn.functional as F
import torchvision
import torchvision.transforms as transforms
from torch import optim
from torch.autograd import Variable
from torch.utils.data import DataLoader
from torchvision.transforms import ToPILImage
show=ToPILImage()
import numpy as np
import matplotlib.pyplot as plt


#
batchSize=128

##load data
transform = transforms.Compose([transforms.Resize(96),transforms.ToTensor(),transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])

trainset = torchvision.datasets.FashionMNIST(root='./data', train=True, download=True, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=batchSize, shuffle=True, num_workers=0)

testset = torchvision.datasets.FashionMNIST(root='./data', train=False, download=True, transform=transform)
testloader = torch.utils.data.DataLoader(testset, batch_size=batchSize, shuffle=False, num_workers=0)

classes = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck')

def imshow(img):
    img = img / 2 + 0.5
    npimg = img.numpy()
    plt.imshow(np.transpose(npimg, (1, 2, 0)))

####network
def conv_relu(in_channels, out_channels, kernel, stride=1, padding=0):
    layer = nn.Sequential(
        nn.Conv2d(in_channels, out_channels, kernel, stride, padding),
        nn.BatchNorm2d(out_channels, eps=1e-3),
        nn.ReLU(True))
    return layer




class Inception(nn.Module):
    def __init__(self,in_channel,c1,c2,c3,c4):
        super(Inception,self).__init__()
        self.norm1_1=nn.BatchNorm2d(in_channel,eps=1e-3)
        self.p1_1=nn.Conv2d(in_channels=in_channel,out_channels=c1,kernel_size=1)
        self.norm2_1 = nn.BatchNorm2d(in_channel, eps=1e-3)
        self.p2_1=nn.Conv2d(in_channels=in_channel,out_channels=c2[0],kernel_size=1)
        self.norm2_2 = nn.BatchNorm2d(c2[0], eps=1e-3)
        self.p2_2=nn.Conv2d(in_channels=c2[0],out_channels=c2[1],kernel_size=3,padding=1)
        self.norm3_1 = nn.BatchNorm2d(in_channel, eps=1e-3)
        self.p3_1=nn.Conv2d(in_channels=in_channel,out_channels=c3[0],kernel_size=1)
        self.norm3_2 = nn.BatchNorm2d(c3[0], eps=1e-3)
        self.p3_2=nn.Conv2d(in_channels=c3[0],out_channels=c3[1],kernel_size=5,padding=2)
        self.p4_1 = nn.MaxPool2d(kernel_size=3,stride=1,padding=1)
        self.norm4_2 = nn.BatchNorm2d(in_channel, eps=1e-3)
        self.p4_2 = nn.Conv2d(in_channels=in_channel, out_channels=c4, kernel_size=1)

    def forward(self, x):
        p1=self.p1_1(F.relu(self.norm1_1(x)))
        p2=self.p2_2(F.relu(self.norm2_2(self.p2_1(F.relu(self.norm2_1(x))))))
        p3=self.p3_2(F.relu(self.norm3_2(self.p3_1(F.relu(self.norm3_1(x))))))
        p4=self.p4_2(F.relu(self.norm4_2(self.p4_1(x))))
        return torch.cat((p1,p2,p3,p4),dim=1)

#Test Inception block
# test_net = Inception(3, 64, (48, 64), (64, 96), 32)
# test_x = Variable(torch.zeros(1, 3, 96, 96))
# print('input shape: {} x {} x {}'.format(test_x.shape[1], test_x.shape[2], test_x.shape[3]))
# test_y = test_net(test_x)
# print('output shape: {} x {} x {}'.format(test_y.shape[1], test_y.shape[2], test_y.shape[3]))



class GoogleNet(nn.Module):
    def __init__(self,in_channel,num_classes):
        super(GoogleNet,self).__init__()
        layers=[]
        layers+=[nn.Conv2d(in_channels=in_channel,out_channels=64,kernel_size=7,stride=2,padding=3),
                 nn.ReLU(),
                 nn.MaxPool2d(kernel_size=3,stride=2,padding=1)]
        layers+=[nn.Conv2d(in_channels=64,out_channels=64,kernel_size=1),
                 nn.Conv2d(in_channels=64,out_channels=192,kernel_size=3,padding=1),
                 nn.MaxPool2d(kernel_size=3,stride=2,padding=1)]
        layers+=[Inception(192,64,(96,128),(16,32),32),
                 Inception(256,128,(128,192),(32,96),64),
                 nn.MaxPool2d(kernel_size=3,stride=2,padding=1)]
        layers+=[Inception(480, 192, (96, 208), (16, 48), 64),
                 Inception(512, 160, (112, 224), (24, 64), 64),
                 Inception(512, 128, (128, 256), (24, 64), 64),
                 Inception(512, 112, (144, 288), (32, 64), 64),
                 Inception(528, 256, (160, 320), (32, 128), 128),
               nn.MaxPool2d(kernel_size=3, stride=2, padding=1)]
        layers += [Inception(832, 256, (160, 320), (32, 128), 128),
                   Inception(832, 384, (192, 384), (48, 128), 128),
                   nn.AvgPool2d(kernel_size=2)]
        self.net = nn.Sequential(*layers)
        self.dense=nn.Linear(1024,num_classes)


    def forward(self,x):
        x=self.net(x)
        x=x.view(-1,1024*1*1)
        x=self.dense(x)
        return x

#Test GoogleNet
# test_net = GoogleNet(3, 10)
# test_x = Variable(torch.zeros(1, 3, 96, 96))
# test_y = test_net(test_x)
# print('output: {}'.format(test_y.shape))



net=GoogleNet(1,10).cuda()
print (net)
criterion=nn.CrossEntropyLoss()
optimizer=optim.SGD(net.parameters(),lr=0.1,momentum=0.9)

#train
print ("training begin")
for epoch in range(3):
    start = time.time()
    running_loss=0
    for i,data in enumerate(trainloader,0):
        # print (inputs,labels)
        image,label=data


        image=image.cuda()
        label=label.cuda()
        image=Variable(image)
        label=Variable(label)

        # imshow(torchvision.utils.make_grid(image))
        # plt.show()
        # print (label)
        optimizer.zero_grad()

        outputs=net(image)
        # print (outputs)
        loss=criterion(outputs,label)

        loss.backward()
        optimizer.step()

        running_loss+=loss.data

        if i%100==99:
            end=time.time()
            print ('[epoch %d,imgs %5d] loss: %.7f  time: %0.3f s'%(epoch+1,(i+1)*batchSize,running_loss/100,(end-start)))
            start=time.time()
            running_loss=0
print ("finish training")


#test
net.eval()
correct=0
total=0
for data in testloader:
    images,labels=data
    images=images.cuda()
    labels=labels.cuda()
    outputs=net(Variable(images))
    _,predicted=torch.max(outputs,1)
    total+=labels.size(0)
    correct+=(predicted==labels).sum()
print('Accuracy of the network on the %d test images: %d %%' % (total , 100 * correct / total))

运行过程

GoogleNet(
  (net): Sequential(
    (0): Conv2d(1, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3))
    (1): ReLU()
    (2): MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False)
    (3): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1))
    (4): Conv2d(64, 192, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (5): MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False)
    (6): Inception(
      (norm1_1): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
      (p1_1): Conv2d(192, 64, kernel_size=(1, 1), stride=(1, 1))
      (norm2_1): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
      (p2_1): Conv2d(192, 96, kernel_size=(1, 1), stride=(1, 1))
      (norm2_2): BatchNorm2d(96, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
      (p2_2): Conv2d(96, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (norm3_1): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
      (p3_1): Conv2d(192, 16, kernel_size=(1, 1), stride=(1, 1))
      (norm3_2): BatchNorm2d(16, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
      (p3_2): Conv2d(16, 32, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
      (p4_1): MaxPool2d(kernel_size=3, stride=1, padding=1, dilation=1, ceil_mode=False)
      (norm4_2): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
      (p4_2): Conv2d(192, 32, kernel_size=(1, 1), stride=(1, 1))
    )
    (7): Inception(
      (norm1_1): BatchNorm2d(256, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
      (p1_1): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1))
      (norm2_1): BatchNorm2d(256, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
      (p2_1): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1))
      (norm2_2): BatchNorm2d(128, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
      (p2_2): Conv2d(128, 192, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (norm3_1): BatchNorm2d(256, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
      (p3_1): Conv2d(256, 32, kernel_size=(1, 1), stride=(1, 1))
      (norm3_2): BatchNorm2d(32, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
      (p3_2): Conv2d(32, 96, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
      (p4_1): MaxPool2d(kernel_size=3, stride=1, padding=1, dilation=1, ceil_mode=False)
      (norm4_2): BatchNorm2d(256, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
      (p4_2): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1))
    )
    (8): MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False)
    (9): Inception(
      (norm1_1): BatchNorm2d(480, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
      (p1_1): Conv2d(480, 192, kernel_size=(1, 1), stride=(1, 1))
      (norm2_1): BatchNorm2d(480, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
      (p2_1): Conv2d(480, 96, kernel_size=(1, 1), stride=(1, 1))
      (norm2_2): BatchNorm2d(96, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
      (p2_2): Conv2d(96, 208, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (norm3_1): BatchNorm2d(480, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
      (p3_1): Conv2d(480, 16, kernel_size=(1, 1), stride=(1, 1))
      (norm3_2): BatchNorm2d(16, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
      (p3_2): Conv2d(16, 48, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
      (p4_1): MaxPool2d(kernel_size=3, stride=1, padding=1, dilation=1, ceil_mode=False)
      (norm4_2): BatchNorm2d(480, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
      (p4_2): Conv2d(480, 64, kernel_size=(1, 1), stride=(1, 1))
    )
    (10): Inception(
      (norm1_1): BatchNorm2d(512, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
      (p1_1): Conv2d(512, 160, kernel_size=(1, 1), stride=(1, 1))
      (norm2_1): BatchNorm2d(512, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
      (p2_1): Conv2d(512, 112, kernel_size=(1, 1), stride=(1, 1))
      (norm2_2): BatchNorm2d(112, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
      (p2_2): Conv2d(112, 224, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (norm3_1): BatchNorm2d(512, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
      (p3_1): Conv2d(512, 24, kernel_size=(1, 1), stride=(1, 1))
      (norm3_2): BatchNorm2d(24, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
      (p3_2): Conv2d(24, 64, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
      (p4_1): MaxPool2d(kernel_size=3, stride=1, padding=1, dilation=1, ceil_mode=False)
      (norm4_2): BatchNorm2d(512, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
      (p4_2): Conv2d(512, 64, kernel_size=(1, 1), stride=(1, 1))
    )
    (11): Inception(
      (norm1_1): BatchNorm2d(512, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
      (p1_1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1))
      (norm2_1): BatchNorm2d(512, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
      (p2_1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1))
      (norm2_2): BatchNorm2d(128, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
      (p2_2): Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (norm3_1): BatchNorm2d(512, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
      (p3_1): Conv2d(512, 24, kernel_size=(1, 1), stride=(1, 1))
      (norm3_2): BatchNorm2d(24, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
      (p3_2): Conv2d(24, 64, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
      (p4_1): MaxPool2d(kernel_size=3, stride=1, padding=1, dilation=1, ceil_mode=False)
      (norm4_2): BatchNorm2d(512, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
      (p4_2): Conv2d(512, 64, kernel_size=(1, 1), stride=(1, 1))
    )
    (12): Inception(
      (norm1_1): BatchNorm2d(512, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
      (p1_1): Conv2d(512, 112, kernel_size=(1, 1), stride=(1, 1))
      (norm2_1): BatchNorm2d(512, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
      (p2_1): Conv2d(512, 144, kernel_size=(1, 1), stride=(1, 1))
      (norm2_2): BatchNorm2d(144, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
      (p2_2): Conv2d(144, 288, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (norm3_1): BatchNorm2d(512, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
      (p3_1): Conv2d(512, 32, kernel_size=(1, 1), stride=(1, 1))
      (norm3_2): BatchNorm2d(32, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
      (p3_2): Conv2d(32, 64, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
      (p4_1): MaxPool2d(kernel_size=3, stride=1, padding=1, dilation=1, ceil_mode=False)
      (norm4_2): BatchNorm2d(512, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
      (p4_2): Conv2d(512, 64, kernel_size=(1, 1), stride=(1, 1))
    )
    (13): Inception(
      (norm1_1): BatchNorm2d(528, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
      (p1_1): Conv2d(528, 256, kernel_size=(1, 1), stride=(1, 1))
      (norm2_1): BatchNorm2d(528, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
      (p2_1): Conv2d(528, 160, kernel_size=(1, 1), stride=(1, 1))
      (norm2_2): BatchNorm2d(160, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
      (p2_2): Conv2d(160, 320, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (norm3_1): BatchNorm2d(528, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
      (p3_1): Conv2d(528, 32, kernel_size=(1, 1), stride=(1, 1))
      (norm3_2): BatchNorm2d(32, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
      (p3_2): Conv2d(32, 128, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
      (p4_1): MaxPool2d(kernel_size=3, stride=1, padding=1, dilation=1, ceil_mode=False)
      (norm4_2): BatchNorm2d(528, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
      (p4_2): Conv2d(528, 128, kernel_size=(1, 1), stride=(1, 1))
    )
    (14): MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False)
    (15): Inception(
      (norm1_1): BatchNorm2d(832, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
      (p1_1): Conv2d(832, 256, kernel_size=(1, 1), stride=(1, 1))
      (norm2_1): BatchNorm2d(832, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
      (p2_1): Conv2d(832, 160, kernel_size=(1, 1), stride=(1, 1))
      (norm2_2): BatchNorm2d(160, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
      (p2_2): Conv2d(160, 320, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (norm3_1): BatchNorm2d(832, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
      (p3_1): Conv2d(832, 32, kernel_size=(1, 1), stride=(1, 1))
      (norm3_2): BatchNorm2d(32, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
      (p3_2): Conv2d(32, 128, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
      (p4_1): MaxPool2d(kernel_size=3, stride=1, padding=1, dilation=1, ceil_mode=False)
      (norm4_2): BatchNorm2d(832, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
      (p4_2): Conv2d(832, 128, kernel_size=(1, 1), stride=(1, 1))
    )
    (16): Inception(
      (norm1_1): BatchNorm2d(832, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
      (p1_1): Conv2d(832, 384, kernel_size=(1, 1), stride=(1, 1))
      (norm2_1): BatchNorm2d(832, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
      (p2_1): Conv2d(832, 192, kernel_size=(1, 1), stride=(1, 1))
      (norm2_2): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
      (p2_2): Conv2d(192, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (norm3_1): BatchNorm2d(832, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
      (p3_1): Conv2d(832, 48, kernel_size=(1, 1), stride=(1, 1))
      (norm3_2): BatchNorm2d(48, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
      (p3_2): Conv2d(48, 128, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
      (p4_1): MaxPool2d(kernel_size=3, stride=1, padding=1, dilation=1, ceil_mode=False)
      (norm4_2): BatchNorm2d(832, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
      (p4_2): Conv2d(832, 128, kernel_size=(1, 1), stride=(1, 1))
    )
    (17): AvgPool2d(kernel_size=2, stride=2, padding=0)
  )
  (dense): Linear(in_features=1024, out_features=10, bias=True)
)
training begin
[epoch 1,imgs 12800] loss: 0.8332726  time: 7.296 s
[epoch 1,imgs 25600] loss: 0.4878939  time: 7.260 s
[epoch 1,imgs 38400] loss: 0.4382473  time: 7.275 s
[epoch 1,imgs 51200] loss: 0.3879716  time: 7.280 s
[epoch 2,imgs 12800] loss: 0.3313940  time: 7.340 s
[epoch 2,imgs 25600] loss: 0.3187236  time: 7.329 s
[epoch 2,imgs 38400] loss: 0.3174009  time: 7.330 s
[epoch 2,imgs 51200] loss: 0.2961887  time: 7.328 s
[epoch 3,imgs 12800] loss: 0.2664629  time: 7.364 s
[epoch 3,imgs 25600] loss: 0.2510577  time: 7.357 s
[epoch 3,imgs 38400] loss: 0.2545497  time: 7.354 s
[epoch 3,imgs 51200] loss: 0.2475178  time: 7.354 s
finish training
Accuracy of the network on the 10000 test images: 89 %

相关文章

网友评论

      本文标题:Pytorch GoogleNet Fashion-Mnist

      本文链接:https://www.haomeiwen.com/subject/rufsoftx.html