美文网首页
OpenCV iOS 图像处理和人脸识别

OpenCV iOS 图像处理和人脸识别

作者: rome753 | 来源:发表于2022-05-17 22:53 被阅读0次

    iOS工程添加OpenCV配置方法如下
    https://blog.csdn.net/verybigbug/article/details/113588991

    配置好后,就可以在移动端开发OpenCV了。我用的是Swift语言。

    1 简单的图片处理

    import opencv2可以直接导入OpenCV,不需要写c或者bridging代码。

    大部分方法可以用Imgproc直接调,OpenCV的核心图像类Mat可以与iOS的UIImage和CGImage相互转换。

    import opencv2
    
    class MyViewController: UIViewController {
        override func viewDidLoad() {
            super.viewDidLoad()
            let image1 = UIImage(named: "001")!
            let iv1 = UIImageView(image: image1)
            let iv2 = UIImageView()
            iv1.frame = CGRect(x: 100, y: 100, width: 200, height: 200)
            iv2.frame = CGRect(x: 100, y: 300, width: 200, height: 200)
            view.addSubview(iv1)
            view.addSubview(iv2)
            
            let m1 = Mat(uiImage: image1)
            Imgproc.cvtColor(src: m1, dst: m1, code: .COLOR_BGRA2GRAY)
            iv2.image = m1.toUIImage()
        }
    }
    

    2 使用相机

    使用CvVideoCamera2类,设置帧率、尺寸、方向等参数,开启相机,然后在CvVideoCameraDelegate2processImage代理方法中可以获取实时图像。

    有几点需要注意:

    • CvVideoCamera2对象要放在类里面,不能放在方法里,否则会被马上回收
    • processImage方法不是主线程,设置图像需要在主线程
    • 图像是BGR格式的要转成RGB,不然你就会发现你的脸是绿的!
    import opencv2
    
    class MyViewController: UIViewController, CvVideoCameraDelegate2 {
        
        var lastTime = 0.0
        
        func processImage(_ image: Mat!) {
            Imgproc.cvtColor(src: image, dst: image, code: .COLOR_BGR2RGB)
            
            DispatchQueue.main.async {
                self.camView.image = image.toUIImage()
                print("processImage mat \(image.size()) time \((Date().timeIntervalSince1970 - self.lastTime) * 1000) ms")
                self.lastTime = Date().timeIntervalSince1970
            }
        }
        
        
        let cam = CvVideoCamera2.init()
        lazy var camView = UIImageView(frame: view.frame)
        
        override func viewDidLoad() {
            super.viewDidLoad()
            
            camView.contentMode = .scaleAspectFill
            let w = UIScreen.main.bounds.width
            camView.frame = CGRect(x: 0, y: 0, width: w, height: w * 720 / 1280)
            view.addSubview(camView)
            
            cam.delegate = self
            cam.defaultAVCaptureDevicePosition = .front
            cam.defaultAVCaptureSessionPreset = AVCaptureSession.Preset.hd1280x720.rawValue
            cam.defaultAVCaptureVideoOrientation = .portrait
            cam.defaultFPS = 30
            cam.start()
        } 
    

    3 人脸识别

    有三种方式,其中两种是OpenCV的:级联分类器和DNN,它们要用模型文件,下载地址我在上一篇中提到了,另一种是iOS自带的CIFilter方式。我分别实现一下。

    3.1 级联分类器人脸识别

    我用的iOS设备是A12处理器的iPad Mini5,检测时间在70ms左右,每秒只有十几帧,有点卡;用pyrDown将图像缩小后(注释的代码)检测时间提高到33ms左右,明显流畅了,当然检测准确率还是一般。

        let cc_path = Bundle.main.path(forResource: "lbpcascade_frontalface_improved", ofType: "xml")
        lazy var cc = CascadeClassifier.init(filename: cc_path!)
    
    
            let gray = Mat()
            Imgproc.cvtColor(src: image, dst: gray, code: .COLOR_BGRA2GRAY)
    //        Imgproc.pyrDown(src: gray, dst: gray)
            Imgproc.equalizeHist(src: gray, dst: gray)
    
            var rects:[Rect2i] = []
            cc.detectMultiScale(image: gray, objects: &rects)
            for r in rects {
    //            r.x *= 2
    //            r.y *= 2
    //            r.width *= 2
    //            r.height *= 2
                Imgproc.rectangle(img: image, rec: r, color: Scalar(0, 0, 255, 255), thickness: 2)
            }
          
    

    3.2 DNN 人脸检测

    检测效果非常好,检测时间在55ms左右,稍微有点卡,并且缩小图像并不能加快速度。

    目前我还没想到能加快计算速度的方法,它应该不支持iOS设备的GPU加速,也许用TensorFlow Lite模型?

        let pb_path = Bundle.main.path(forResource: "opencv_face_detector_uint8", ofType: "pb")
        let pbtxt_path = Bundle.main.path(forResource: "opencv_face_detector", ofType: "pbtxt")
        lazy var net = Dnn.readNetFromTensorflow(model: pb_path!, config: pbtxt_path!)
    
    
            let blob = Dnn.blobFromImage(image: image, scalefactor: 1.0, size: Size2i(width: 300, height: 300), mean: Scalar(104,177,123), swapRB: false, crop: false)
            net.setInput(blob: blob)
            let probs = net.forward()
    
            let probsData = Data.init(bytes: probs.dataPointer(), count: probs.elemSize() * probs.total())
            let detectionMat = Mat(rows: probs.size(2), cols: probs.size(3), type: CvType.CV_32F, data: probsData)
    
            for i in 0..<detectionMat.rows() {
                let confidence = detectionMat.get(row: i, col: 2)[0]
                if confidence > 0.5 {
                    let x1 = Int32(detectionMat.get(row: i, col: 3)[0] * Double(image.cols()))
                    let y1 = Int32(detectionMat.get(row: i, col: 4)[0] * Double(image.rows()))
                    let x2 = Int32(detectionMat.get(row: i, col: 5)[0] * Double(image.cols()))
                    let y2 = Int32(detectionMat.get(row: i, col: 6)[0] * Double(image.rows()))
                    let r = Rect2i(x: x1, y: y1, width: x2 - x1, height: y2 - y1)
                    Imgproc.rectangle(img: image, rec: r, color: Scalar(0, 0, 255, 255), thickness: 2)
                }
            }
    

    3.3 CIFilter 人脸检测

    检测前用CIImage.init(cgImage: image.toCGImage())将Mat转换成CIImage格式

    检测时间在33ms左右,比较流畅,检测效果比DNN略差,但是也很准确了。

    
        lazy var cidetector = CIDetector.init(ofType: CIDetectorTypeFace, context: nil)!
    
    
            let features = cidetector.features(in: CIImage.init(cgImage: image.toCGImage()))
            print("processImage ciimage features \(features.count)")
            for f in features {
                let x = Int32(f.bounds.minX)
                let y = Int32(f.bounds.minY)
                let w = Int32(f.bounds.width)
                let h = Int32(f.bounds.height)
                let r = Rect2i(x: x, y: image.height() - y - h, width: w, height: h)
                Imgproc.rectangle(img: image, rec: r, color: Scalar(0, 0, 255, 255), thickness: 2)
            }
    

    相关文章

      网友评论

          本文标题:OpenCV iOS 图像处理和人脸识别

          本文链接:https://www.haomeiwen.com/subject/kbfourtx.html