美文网首页
第二章——算法分析

第二章——算法分析

作者: IvyFan2017 | 来源:发表于2017-12-28 20:17 被阅读0次

    0. 目标

    • To understand why algorithm analysis is important.
    • To be able to use “Big-O” to describe execution time.
    • To understand the “Big-O” execution time of common operations on Python lists and dictionaries.
    • To understand how the implementation of Python data impacts algorithm analysis.
    • To understand how to benchmark simple Python programs.

    1. 课程笔记

    1.1 如何记录代码的运行时间

    如何写好的代码:

    1. 可读性
    2. 考虑空间复杂度
    3. 考虑时间复杂度——可调用python的内置函数记录程序运行的时间
    import time
    
    def sumOfN3(n):
       start = time.time()
       theSum = (n * (n + 1)) / 2
       end = time.time()
    
       return theSum,end-start
    
    for i in range(5):
           print("Sum is %d required %10.7f seconds"%sumOfN3(100000))
    

    1.2 big-O (big order)

    O(n^2)和O(n)的对比

    ### bad algorithm-find the smallest number O(n^2) ####
    import time
    from random import randrange
    
    def find_min(list):
        n = len(list)
        for i in range(n):
            for j in range(n):
                if list[j] < list[i]:
                    continue
        print('the smallest number is', list[i])
    
    def mainA():
        list = [5, 4, 3, 2, 1, 0]
        find_min(list)
    
    def mainB():
        for listsize in range(1000, 10001, 1000):
            list = [randrange(100000000) for x in range(listsize)]
            start = time.time()
            find_min(list)
            end= time.time()
            print ("size: %d time: %f " % (listsize, end-start))
    
    mainB()
    
    #### good algorithm O(n) ######
    
    def Find_Min(list):
        flag = list[0]
        for i in list:      ##python很高级,可以直接循环list!
            if i < flag:
                flag = i
        return flag
    

    相关文章

      网友评论

          本文标题:第二章——算法分析

          本文链接:https://www.haomeiwen.com/subject/kbtbgxtx.html