守恒定律 by田湖雁

作者: 田湖雁 | 来源:发表于2019-04-06 18:50 被阅读0次

守恒定律

知识点

  • 动量守恒、角动量守恒的直观感受
  • 动量守恒的方程
  • 角动量守恒的方程
    • 约定好正方向
    • 初态时,写出各个物件的角动量L_{i}(注意正负号)
    • 末态时,写出各个物件的角动量L_{j}(注意正负号)
    • 然后,列方程为:\sum_{i}L_{i}=\sum_{j}L_{j}
tip

  • 相比对单词的辨析进行死记硬背,不如记几个例句。
  • 相比对物理概念进行全方位多角度的分析,不如记几个模型。
表达题

  • 动量守恒和角动量守恒的充要条件分别是

解答:动量守恒:系统所受合外力为0
角动量守恒:合外力矩为0

  • 借助具体例子培养直观认识。动量守恒的充要条件是合外力为零。作为近似,实际生活中,内力比外力强很多时,也认为动量守恒。下面常见的物理模型中,

    (1) 爆炸瞬间;
    (2) 两个小球非弹性碰撞(部分动能转化为内能)瞬间;
    (3) 子弹打击用轻绳悬挂的小球瞬间;
    (4) 光滑地面上有车,车上有人,人在车内走动。
    (5) 小球撞击墙壁反弹。
    (6) 子弹打击用轻杆悬挂的小球瞬间;
    请思考,其中动量守恒的有( ),记住这些模型,会减少很多困扰。

解答:(1)爆炸瞬间内力远大于外力,守恒。
(2)守恒
(3)守恒
(4)守恒
(5)小球受墙壁作用力,不守恒
(6)轻杆对小球有作用力,不守恒

  • 借助具体例子培养直观认识。角动量守恒的充要条件是合外力矩为零。下面常见的物理模型中,
    (1) 地球绕着太阳转;
    (2) 光滑桌面上用轻绳拽着做圆周运动;
    (3) 光滑冰面上的芭蕾舞旋转;
    (4) 子弹打击用轻杆悬挂着的小球瞬间。
    (5) 小球打击旋转的滑轮的瞬间。
    (6) 绕同一转轴转动的两个飞轮,彼此啮合的瞬间;
    请思考,其中角动量守恒的有( ),记住这些模型,会减少很多困扰。

解答: (1)\vec M_万=rx\vec F_万=0
(2)\vec M_万=rx\vec T=0
(3)(4)(5)(6)

  • 请记下角动量的核心公式,在角动量守恒中会反复使用。圆周运动的质点和定轴转动的刚体,角动量分别为

解答:圆周运动:L=mR^2w
定轴转动:L=Iw

  • 花样滑冰运动员绕通过自身的竖直轴转动,开始时两臂伸开,转动惯量为I_{0},角速度为\omega_{0}。然后她将两臂收回,使转动惯量减少为\frac{1}{2}I_{0}.设这时她转动的角速度变为\omega,则角动量守恒的方程为

解答:I_0w_0=\frac{1}{2}I_0w

  • 一圆盘(M,R)绕垂直于盘面的水平光滑固定轴O转动,转速为\omega_{0}. 如图射来一个质量为m,速度大小为v_{0}的子弹,子弹射入圆盘并且留在盘边缘上。设子弹射入后的瞬间,圆盘的角速度\omega。约定逆时针转时角动量为正。
    则初态时,将子弹速度沿切向(等效成圆周运动,从而得到角动量)和法向分解,其切向速度和角动量分别为
    (1) v_{0}, mRv_{0}
    (2) v_{0}\sin\theta, mRv_{0}\sin\theta
    (3) v_{0}\sin\theta, -mRv_{0}\sin\theta
    初态的总角动量为
    (4) \frac{1}{2}MR^{2}\omega_{0}-mRv_{0}\sin\theta
    (5) \frac{1}{2}MR^{2}\omega_{0}+mRv_{0}\sin\theta
    末态的总角动量为
    (6) \frac{1}{2}MR^{2}\omega
    (7) \frac{1}{2}MR^{2}\omega+mR^{2}\omega
    核心方程是为
    (8) \frac{1}{2}MR^{2}\omega_{0}-mRv_{0}\sin\theta=\frac{1}{2}MR^{2}\omega+mR^{2}\omega
    (9) \frac{1}{2}MR^{2}\omega_{0}+mR^{2}\omega_{0}=\frac{1}{2}MR^{2}\omega+mR^{2}\omega
    以上正确的是( )
解答: image.png

(2)(5)(7)(9)

  • 一圆盘(M,R)绕垂直于盘面的水平光滑固定轴O转动,转速为\omega_{0}. 如图射来两个质量同为m,速度大小同为v_{0},方向相反,子弹射入圆盘并且留在盘边缘上。设子弹射入后的瞬间,圆盘的角速度\omega。约定逆时针转时角动量为正。
    则初态时,总角动量为
    (1) \frac{1}{2}MR^{2}\omega_{0}-2mRv_{0}
    (2) \frac{1}{2}MR^{2}\omega_{0}
    末态的总角动量为
    (3) \frac{1}{2}MR^{2}\omega
    (4) \frac{1}{2}MR^{2}\omega+2mR^{2}\omega
    核心方程是为
    (5) \frac{1}{2}MR^{2}\omega_{0}-2mRv_{0}=\frac{1}{2}MR^{2}\omega+2mR^{2}\omega
    (6) \frac{1}{2}MR^{2}\omega_{0}=\frac{1}{2}MR^{2}\omega+2mR^{2}\omega
    以上正确的是
解答: image.png

(1)(4)(5)

  • 角动量守恒的计算题:有一质量为M、长为l的均匀细棒,平放在光滑的水平桌面上,以角速度\omega_{0}绕通过端点O顺时针转动。另有质量为m,初速为v_{0}的小滑块,与棒的底端A点相撞。碰撞后的瞬间,细棒反转,且角速度为\omega_{1};小滑块反向,速率为v_{1},如图所示。规定顺时针转动方向为正。
    则初态时,总角动量为
    (1) \frac{1}{3}Ml^{2}\cdot\omega_{0}+ml\cdot v_{0}
    (2) \frac{1}{3}Ml^{2}\cdot\omega_{0}-ml\cdot v_{0}
    末态的总角动量为
    (3) \frac{1}{3}Ml^{2}\cdot\omega_{1}-ml\cdot v_{1}
    (4) -\frac{1}{3}Ml^{2}\cdot\omega_{1}+ml\cdot v_{1}
    核心方程是为
    (5) \frac{1}{3}Ml^{2}\cdot\omega_{0}+ml\cdot v_{0}=\frac{1}{3}Ml^{2}\cdot\omega_{1}-ml\cdot v_{1}
    (6) \frac{1}{3}Ml^{2}\cdot\omega_{0}-ml\cdot v_{0}=-\frac{1}{3}Ml^{2}\cdot\omega_{1}+ml\cdot v_{1}
    以上正确的是
解答: image.png

(2)(4)(6)

相关文章

  • 守恒定律 by田湖雁

    守恒定律 知识点 动量守恒、角动量守恒的直观感受 动量守恒的方程 角动量守恒的方程约定好正方向初态时,写出各个物件...

  • 力矩 by田湖雁

    力矩 知识点 力矩是矢量,描述力对转动状态的影响 力矩的直观感受 力矩的矢量定义:大小,方向 小tip 建立直观图...

  • 机械能守恒定律 by 田湖雁

    第七讲:机械能守恒定律 数学符号 滑动摩擦系数为 对应的代码为$\mu$ 知识点 势能重力势能: 弹性势能:万有引...

  • 转动定律 by田湖雁

    转动定律 知识点 类比法理解牛顿第二定律和转动定律 单个刚体的转动 转动、平动组合体:先根据隔离法对各个物件进行简...

  • 角动量 by田湖雁

    知识点 动量的直观感受碰撞模型匀速圆周运动的模型 角动量的直观感受圆周运动速度变化的模型 质点的角动量质点对原点O...

  • 圆周运动by 田湖雁

    圆周运动的“角度量”描述 可能用到的符号 、 、对应代码: $\omega$、$\alpha$、$\beta$ 知...

  • 相对运动 by田湖雁

    相对运动 符号 $\vec{v}_{\text{大地对男生}}$ 知识点 相对运动的矢量式 表达题 今有风相对大地...

  • 湖雁

    光线成针、根根灼眼。 湖色怡人,片片寂静。 心所想,魂所向。 吟鸿一声惊来人,只该铮铮向南方。

  • 这个美女不简单

    田湖镇机械厂有个姑娘叫林雪雁,她粉面桃腮,柳眉杏眼,又有一副魔鬼身材和金嗓子,是公认的厂花,人见人爱。林雪雁年方三...

  • 雁湖散心

    曲径无幽意,柳芽催春早。 此心安何处,空影觅华芳。

网友评论

    本文标题:守恒定律 by田湖雁

    本文链接:https://www.haomeiwen.com/subject/kcbriqtx.html