参考:https://medium.freecodecamp.org/how-to-deploy-an-object-detection-model-with-tensorflow-serving-d6436e65d1d9
1.在object detection api 安装路径下../tensorflow/models/research/object_detection将官方exporter.py修改为tfserving_exporter.py,放在此路径下。
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Functions to export object detection inference graph."""
import logging
import os
import tempfile
import tensorflow as tf
from tensorflow.core.protobuf import rewriter_config_pb2
from tensorflow.python import pywrap_tensorflow
from tensorflow.python.client import session
from tensorflow.python.framework import graph_util
from tensorflow.python.platform import gfile
from tensorflow.python.saved_model import signature_constants
from tensorflow.python.training import saver as saver_lib
from object_detection.builders import model_builder
from object_detection.core import standard_fields as fields
from object_detection.data_decoders import tf_example_decoder
slim = tf.contrib.slim
# TODO: Replace with freeze_graph.freeze_graph_with_def_protos when
# newer version of Tensorflow becomes more common.
def freeze_graph_with_def_protos(
input_graph_def,
input_saver_def,
input_checkpoint,
output_node_names,
restore_op_name,
filename_tensor_name,
clear_devices,
initializer_nodes,
optimize_graph=True,
variable_names_blacklist=''):
"""Converts all variables in a graph and checkpoint into constants."""
del restore_op_name, filename_tensor_name # Unused by updated loading code.
# 'input_checkpoint' may be a prefix if we're using Saver V2 format
if not saver_lib.checkpoint_exists(input_checkpoint):
raise ValueError(
'Input checkpoint "' + input_checkpoint + '" does not exist!')
if not output_node_names:
raise ValueError(
'You must supply the name of a node to --output_node_names.')
# Remove all the explicit device specifications for this node. This helps to
# make the graph more portable.
if clear_devices:
for node in input_graph_def.node:
node.device = ''
with tf.Graph().as_default():
tf.import_graph_def(input_graph_def, name='')
if optimize_graph:
logging.info('Graph Rewriter optimizations enabled')
rewrite_options = rewriter_config_pb2.RewriterConfig(
optimize_tensor_layout=True)
rewrite_options.optimizers.append('pruning')
rewrite_options.optimizers.append('constfold')
rewrite_options.optimizers.append('layout')
graph_options = tf.GraphOptions(
rewrite_options=rewrite_options, infer_shapes=True)
else:
logging.info('Graph Rewriter optimizations disabled')
graph_options = tf.GraphOptions()
config = tf.ConfigProto(graph_options=graph_options)
with session.Session(config=config) as sess:
if input_saver_def:
saver = saver_lib.Saver(saver_def=input_saver_def)
saver.restore(sess, input_checkpoint)
else:
var_list = {}
reader = pywrap_tensorflow.NewCheckpointReader(input_checkpoint)
var_to_shape_map = reader.get_variable_to_shape_map()
for key in var_to_shape_map:
try:
tensor = sess.graph.get_tensor_by_name(key + ':0')
except KeyError:
# This tensor doesn't exist in the graph (for example it's
# 'global_step' or a similar housekeeping element) so skip it.
continue
var_list[key] = tensor
saver = saver_lib.Saver(var_list=var_list)
saver.restore(sess, input_checkpoint)
if initializer_nodes:
sess.run(initializer_nodes)
variable_names_blacklist = (variable_names_blacklist.split(',') if
variable_names_blacklist else None)
output_graph_def = graph_util.convert_variables_to_constants(
sess,
input_graph_def,
output_node_names.split(','),
variable_names_blacklist=variable_names_blacklist)
return output_graph_def
def replace_variable_values_with_moving_averages(graph,
current_checkpoint_file,
new_checkpoint_file):
"""Replaces variable values in the checkpoint with their moving averages.
If the current checkpoint has shadow variables maintaining moving averages of
the variables defined in the graph, this function generates a new checkpoint
where the variables contain the values of their moving averages.
Args:
graph: a tf.Graph object.
current_checkpoint_file: a checkpoint containing both original variables and
their moving averages.
new_checkpoint_file: file path to write a new checkpoint.
"""
with graph.as_default():
variable_averages = tf.train.ExponentialMovingAverage(0.0)
ema_variables_to_restore = variable_averages.variables_to_restore()
with tf.Session() as sess:
read_saver = tf.train.Saver(ema_variables_to_restore)
read_saver.restore(sess, current_checkpoint_file)
write_saver = tf.train.Saver()
write_saver.save(sess, new_checkpoint_file)
def _image_tensor_input_placeholder(input_shape=None):
"""Returns input placeholder and a 4-D uint8 image tensor."""
if input_shape is None:
input_shape = (None, None, None, 3)
input_tensor = tf.placeholder(
dtype=tf.float32, shape=input_shape, name='image_tensor')
return input_tensor, input_tensor
def _tf_example_input_placeholder():
"""Returns input that accepts a batch of strings with tf examples.
Returns:
a tuple of input placeholder and the output decoded images.
"""
batch_tf_example_placeholder = tf.placeholder(
tf.string, shape=[None], name='tf_example')
def decode(tf_example_string_tensor):
tensor_dict = tf_example_decoder.TfExampleDecoder().decode(
tf_example_string_tensor)
image_tensor = tensor_dict[fields.InputDataFields.image]
return image_tensor
return (batch_tf_example_placeholder,
tf.map_fn(decode,
elems=batch_tf_example_placeholder,
dtype=tf.,
parallel_iterations=32,
back_prop=False))
def _encoded_image_string_tensor_input_placeholder():
"""Returns input that accepts a batch of PNG or JPEG strings.
Returns:
a tuple of input placeholder and the output decoded images.
"""
batch_image_str_placeholder = tf.placeholder(
dtype=tf.string,
shape=[None],
name='encoded_image_string_tensor')
def decode(encoded_image_string_tensor):
image_tensor = tf.image.decode_image(encoded_image_string_tensor,
channels=3)
image_tensor.set_shape((None, None, 3))
return image_tensor
return (batch_image_str_placeholder,
tf.map_fn(
decode,
elems=batch_image_str_placeholder,
dtype=tf.float32,
parallel_iterations=32,
back_prop=False))
input_placeholder_fn_map = {
'image_tensor': _image_tensor_input_placeholder,
'encoded_image_string_tensor':
_encoded_image_string_tensor_input_placeholder,
'tf_example': _tf_example_input_placeholder,
}
def _add_output_tensor_nodes(postprocessed_tensors,
output_collection_name='inference_op'):
"""Adds output nodes for detection boxes and scores.
Adds the following nodes for output tensors -
* num_detections: float32 tensor of shape [batch_size].
* detection_boxes: float32 tensor of shape [batch_size, num_boxes, 4]
containing detected boxes.
* detection_scores: float32 tensor of shape [batch_size, num_boxes]
containing scores for the detected boxes.
* detection_classes: float32 tensor of shape [batch_size, num_boxes]
containing class predictions for the detected boxes.
* detection_masks: (Optional) float32 tensor of shape
[batch_size, num_boxes, mask_height, mask_width] containing masks for each
detection box.
Args:
postprocessed_tensors: a dictionary containing the following fields
'detection_boxes': [batch, max_detections, 4]
'detection_scores': [batch, max_detections]
'detection_classes': [batch, max_detections]
'detection_masks': [batch, max_detections, mask_height, mask_width]
(optional).
'num_detections': [batch]
output_collection_name: Name of collection to add output tensors to.
Returns:
A tensor dict containing the added output tensor nodes.
"""
label_id_offset = 1
boxes = postprocessed_tensors.get('detection_boxes')
scores = postprocessed_tensors.get('detection_scores')
classes = postprocessed_tensors.get('detection_classes') + label_id_offset
masks = postprocessed_tensors.get('detection_masks')
num_detections = postprocessed_tensors.get('num_detections')
outputs = {}
outputs['detection_boxes'] = tf.identity(boxes, name='detection_boxes')
outputs['detection_scores'] = tf.identity(scores, name='detection_scores')
outputs['detection_classes'] = tf.identity(classes, name='detection_classes')
outputs['num_detections'] = tf.identity(num_detections, name='num_detections')
if masks is not None:
outputs['detection_masks'] = tf.identity(masks, name='detection_masks')
for output_key in outputs:
tf.add_to_collection(output_collection_name, outputs[output_key])
if masks is not None:
tf.add_to_collection(output_collection_name, outputs['detection_masks'])
return outputs
# def _write_frozen_graph(frozen_graph_path, frozen_graph_def):
# """Writes frozen graph to disk.
#
# Args:
# frozen_graph_path: Path to write inference graph.
# frozen_graph_def: tf.GraphDef holding frozen graph.
# """
# with gfile.GFile(frozen_graph_path, 'wb') as f:
# f.write(frozen_graph_def.SerializeToString())
# logging.info('%d ops in the final graph.', len(frozen_graph_def.node))
def _write_saved_model(saved_model_path,
trained_checkpoint_prefix,
inputs,
outputs):
"""Writes SavedModel to disk.
Args:
saved_model_path: Path to write SavedModel.
trained_checkpoint_prefix: path to trained_checkpoint_prefix.
inputs: The input image tensor to use for detection.
outputs: A tensor dictionary containing the outputs of a DetectionModel.
"""
saver = tf.train.Saver()
with session.Session() as sess:
saver.restore(sess, trained_checkpoint_prefix)
builder = tf.saved_model.builder.SavedModelBuilder(saved_model_path)
tensor_info_inputs = {
'inputs': tf.saved_model.utils.build_tensor_info(inputs)}
tensor_info_outputs = {}
for k, v in outputs.items():
tensor_info_outputs[k] = tf.saved_model.utils.build_tensor_info(v)
detection_signature = (
tf.saved_model.signature_def_utils.build_signature_def(
inputs=tensor_info_inputs,
outputs=tensor_info_outputs,
method_name=signature_constants.PREDICT_METHOD_NAME))
builder.add_meta_graph_and_variables(
sess, [tf.saved_model.tag_constants.SERVING],
signature_def_map={
'detection_signature':
detection_signature,
signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY:
detection_signature,
},
)
builder.save()
def _export_inference_graph(input_type,
detection_model,
use_moving_averages,
trained_checkpoint_prefix,
output_directory,
additional_output_tensor_names=None,
input_shape=None,
optimize_graph=True,
output_collection_name='inference_op'):
"""Export helper."""
#tf.gfile.MakeDirs(output_directory)
#frozen_graph_path = os.path.join(output_directory,
# 'frozen_inference_graph.pb')
#saved_model_path = os.path.join(output_directory, 'saved_model')
saved_model_path = output_directory
if input_type not in input_placeholder_fn_map:
raise ValueError('Unknown input type: {}'.format(input_type))
placeholder_args = {}
if input_shape is not None:
if input_type != 'image_tensor':
raise ValueError('Can only specify input shape for `image_tensor` '
'inputs.')
placeholder_args['input_shape'] = input_shape
placeholder_tensor, input_tensors = input_placeholder_fn_map[input_type](
**placeholder_args)
inputs = tf.to_float(input_tensors)
preprocessed_inputs = detection_model.preprocess(inputs)
output_tensors = detection_model.predict(preprocessed_inputs)
postprocessed_tensors = detection_model.postprocess(output_tensors)
outputs = _add_output_tensor_nodes(postprocessed_tensors,
output_collection_name)
# Add global step to the graph.
slim.get_or_create_global_step()
if use_moving_averages:
temp_checkpoint_file = tempfile.NamedTemporaryFile()
replace_variable_values_with_moving_averages(
tf.get_default_graph(), trained_checkpoint_prefix,
temp_checkpoint_file.name)
checkpoint_to_use = temp_checkpoint_file.name
else:
checkpoint_to_use = trained_checkpoint_prefix
saver = tf.train.Saver()
input_saver_def = saver.as_saver_def()
if additional_output_tensor_names is not None:
output_node_names = ','.join(outputs.keys()+additional_output_tensor_names)
else:
output_node_names = ','.join(outputs.keys())
frozen_graph_def = freeze_graph_with_def_protos(
input_graph_def=tf.get_default_graph().as_graph_def(),
input_saver_def=input_saver_def,
input_checkpoint=checkpoint_to_use,
output_node_names=output_node_names,
restore_op_name='save/restore_all',
filename_tensor_name='save/Const:0',
clear_devices=True,
optimize_graph=optimize_graph,
initializer_nodes='')
#_write_frozen_graph(frozen_graph_path, frozen_graph_def)
_write_saved_model(saved_model_path, trained_checkpoint_prefix,
placeholder_tensor, outputs)
def export_inference_graph(input_type,
pipeline_config,
trained_checkpoint_prefix,
output_directory,
input_shape=None,
optimize_graph=True,
output_collection_name='inference_op',
additional_output_tensor_names=None):
"""Exports inference graph for the model specified in the pipeline config.
Args:
input_type: Type of input for the graph. Can be one of [`image_tensor`,
`tf_example`].
pipeline_config: pipeline_pb2.TrainAndEvalPipelineConfig proto.
trained_checkpoint_prefix: Path to the trained checkpoint file.
output_directory: Path to write outputs.
input_shape: Sets a fixed shape for an `image_tensor` input. If not
specified, will default to [None, None, None, 3].
optimize_graph: Whether to optimize graph using Grappler.
output_collection_name: Name of collection to add output tensors to.
If None, does not add output tensors to a collection.
additional_output_tensor_names: list of additional output
tensors to include in the frozen graph.
"""
detection_model = model_builder.build(pipeline_config.model,
is_training=False)
_export_inference_graph(input_type, detection_model,
pipeline_config.eval_config.use_moving_averages,
trained_checkpoint_prefix,
output_directory, additional_output_tensor_names,
input_shape, optimize_graph, output_collection_name)
2.编写tfserving_savemodel.py脚本,指定模型配置,训练checkpoints路径,以及上文的脚本。
import tensorflow as tf
# Assuming object detection API is available for use
from object_detection.utils.config_util import create_pipeline_proto_from_configs
from object_detection.utils.config_util import get_configs_from_pipeline_file
import object_detection.tfserving_exporter
# Configuration for model to be exported
config_pathname = 'faster_rcnn_resnet50_coco.config'
# Input checkpoint for the model to be exported
# Path to the directory which consists of the saved model on disk (see above)
trained_model_dir = './zhaobing/vocteds_flaw/logs/frctrainout'
# Create proto from model confguration
configs = get_configs_from_pipeline_file(config_pathname)
pipeline_proto = create_pipeline_proto_from_configs(configs=configs)
# Read .ckpt and .meta files from model directory
checkpoint = tf.train.get_checkpoint_state(trained_model_dir)
input_checkpoint = checkpoint.model_checkpoint_path
# Model Version
model_version_id = '1'
# Output Directory
output_directory = './' + str(model_version_id)
# Export model for serving
object_detection.tfserving_exporter.export_inference_graph(input_type='image_tensor',pipeline_config=pipeline_proto,trained_checkpoint_prefix=input_checkpoint,output_directory=output_directory)
config_pathname
为训练过程中自己选择设定的模型配置文件
trained_model_dir
为自己训练checkpoints文件夹位置
model_version_id
为设定的模型版本号,可设置为1,tensforflow seiving需要版本号进行部署
*注意
本方法在tensorflow1.4版本能够正常运行,迁移到tensorflow1.10版本后,倒模型时候出现错误。
tfserving_exporter.py,71行
ValueError: Protocol message RewriterConfig has no "optimize_tensor_layout" field
解决办法为将tfserving_exporter.py脚本71行括号里的内容注释掉,便可以正常运行。
image.png
3.执行脚本,得文件形式如图,成功!:
image.png
4.python客户端client.py编写
from __future__ import print_function
from PIL import Image
from grpc.beta import implementations
import tensorflow as tf
import matplotlib.pyplot as plt
from tensorflow_serving.apis import predict_pb2
from tensorflow_serving.apis import prediction_service_pb2
import requests
import numpy as np
import time
start_time = time.time()
image = np.array(Image.open('C:/Users/Administrator/Desktop/1.jpg'))
height = image.shape[0]
width = image.shape[1]
print("Image shape:", image.shape)
channel = implementations.insecure_channel("172.28.9.130", 8500)
stub = prediction_service_pb2.beta_create_PredictionService_stub(channel)
request = predict_pb2.PredictRequest()
request.model_spec.name = 'teds'
request.model_spec.signature_name = 'detection_signature'
request.inputs['inputs'].CopyFrom(
tf.contrib.util.make_tensor_proto(image.astype(dtype=np.float32), shape=[1, height, width, 3]))
#print( tf.contrib.util.make_tensor_proto(image.astype(dtype=np.float32), shape=[1, height, width, 3]))
result_future = stub.Predict(request, 1000.)
results = {}
for key in result_future.outputs:
tensor_proto = result_future.outputs[key]
nd_array = tf.contrib.util.make_ndarray(tensor_proto)
results[key] = nd_array
print(results)
print("cost timet:%ss " % (time.time() - start_time))
*注意
1)需先安装好grpc,tensorflow-serving-api等组件
2)注意本模型中客户端的dtype格式要与导出模型文件规定的格式相同,其他类型都会报错,
request.inputs['inputs'].CopyFrom(
tf.contrib.util.make_tensor_proto(image.astype(dtype=np.float32), shape=[1, height, width, 3]))
3)实际上,不同模型的客户端脚本基本类似,主要思想为定义服务器IP,端口,模型名,导出模型时使用的方法名,建立连接,传入图片,输出结果。
5.服务端模型起来后,运行客户端,输出如下:
detection_score
detection_box
detection_class
网友评论