美文网首页
图的遍历方式

图的遍历方式

作者: 旅行者_sz | 来源:发表于2020-04-30 11:47 被阅读0次

一、广度优先遍历
1.构建邻接矩阵

typedef struct
{
    VertexType vexs[MAXVEX]; /* 顶点表 */
    EdgeType arc[MAXVEX][MAXVEX];/* 邻接矩阵,可看作边表 */
    int numVertexes, numEdges; /* 图中当前的顶点数和边数 */
}MGraph;

/*4.1 构建一个邻接矩阵*/
void CreateMGraph(MGraph *G)
{
    int i, j;
    
    //1. 确定图的顶点数以及边数
    G->numEdges=15;
    G->numVertexes=9;
    
    /*2.读入顶点信息,建立顶点表 */
    G->vexs[0]='A';
    G->vexs[1]='B';
    G->vexs[2]='C';
    G->vexs[3]='D';
    G->vexs[4]='E';
    G->vexs[5]='F';
    G->vexs[6]='G';
    G->vexs[7]='H';
    G->vexs[8]='I';
    
    /*3. 初始化图中的边表*/
    for (i = 0; i < G->numVertexes; i++)
    {
        for ( j = 0; j < G->numVertexes; j++)
        {
            G->arc[i][j]=0;
        }
    }
    
    /*4.将图中的连接信息输入到边表中*/
    G->arc[0][1]=1;
    G->arc[0][5]=1;
    
    G->arc[1][2]=1;
    G->arc[1][8]=1;
    G->arc[1][6]=1;
    
    G->arc[2][3]=1;
    G->arc[2][8]=1;
    
    G->arc[3][4]=1;
    G->arc[3][7]=1;
    G->arc[3][6]=1;
    G->arc[3][8]=1;
    
    G->arc[4][5]=1;
    G->arc[4][7]=1;
    
    G->arc[5][6]=1;
    
    G->arc[6][7]=1;
    
    /*5.无向图是对称矩阵.构成对称*/
    for(i = 0; i < G->numVertexes; i++)
    {
        for(j = i; j < G->numVertexes; j++)
        {
            G->arc[j][i] =G->arc[i][j];
        }
    }
}

2、循环队列的顺序存储结构(需要用到的队列结构与相关功能函数)

typedef struct
{
    int data[MAXSIZE];
    int front;        /* 头指针 */
    int rear;        /* 尾指针,若队列不空,指向队列尾元素的下一个位置 */
}Queue;

/* 初始化一个空队列Q */
Status InitQueue(Queue *Q)
{
    Q->front=0;
    Q->rear=0;
    return  OK;
}

/* 若队列Q为空队列,则返回TRUE,否则返回FALSE */
Status QueueEmpty(Queue Q)
{
    if(Q.front==Q.rear) /* 队列空的标志 */
    return TRUE;
    else
    return FALSE;
}

/* 若队列未满,则插入元素e为Q新的队尾元素 */
Status EnQueue(Queue *Q,int e)
{
    if ((Q->rear+1)%MAXSIZE == Q->front)    /* 队列满的判断 */
    return ERROR;
    Q->data[Q->rear]=e;            /* 将元素e赋值给队尾 */
    Q->rear=(Q->rear+1)%MAXSIZE;/* rear指针向后移一位置, */
    /* 若到最后则转到数组头部 */
    return  OK;
}

/* 若队列不空,则删除Q中队头元素,用e返回其值 */
Status DeQueue(Queue *Q,int *e)
{
    if (Q->front == Q->rear)            /* 队列空的判断 */
    return ERROR;
    *e=Q->data[Q->front];                /* 将队头元素赋值给e */
    Q->front=(Q->front+1)%MAXSIZE;    /* front指针向后移一位置, */
    /* 若到最后则转到数组头部 */
    return  OK;
}

3、邻接矩阵广度优先遍历

Boolean visited[MAXVEX]; /* 访问标志的数组 */
void BFSTraverse(MGraph G){
    
    int temp = 0;
    
    //1.
    Queue Q;
    InitQueue(&Q);
    
    //2.将访问标志数组全部置为"未访问状态FALSE"
    for (int i = 0 ; i < G.numVertexes; i++) {
        visited[i] = FALSE;
    }
    
    //3.对遍历邻接表中的每一个顶点(对于连通图只会执行1次,这个循环是针对非连通图)
    for (int i = 0 ; i < G.numVertexes; i++) {
        
        if(!visited[i]){
            visited[i] = TRUE;
            printf("%c  ",G.vexs[i]);
            
            //4. 入队
            EnQueue(&Q, i);
            while (!QueueEmpty(Q)) {
                //出队
                DeQueue(&Q, &i);
                for (int j = 0; j < G.numVertexes; j++) {
                    if(G.arc[i][j] == 1 && !visited[j])
                    {    visited[j] = TRUE;
                        printf("%c   ",G.vexs[j]);
                        EnQueue(&Q, j);
                    }
                }
            }
        }
        
    }
    
    
}

4.邻接表存储结构(物理存储结构不连续)

/* 邻接矩阵结构 */
typedef struct
{
  VertexType vexs[MAXVEX]; /* 顶点表 */
  EdgeType arc[MAXVEX][MAXVEX];/* 邻接矩阵,可看作边表 */
  int numVertexes, numEdges; /* 图中当前的顶点数和边数 */
}MGraph;

/* 邻接表结构****************** */
typedef struct EdgeNode /* 边表结点 */
{
  int adjvex;    /* 邻接点域,存储该顶点对应的下标 */
  int weight;        /* 用于存储权值,对于非网图可以不需要 */
  struct EdgeNode *next; /* 链域,指向下一个邻接点 */
}EdgeNode;

typedef struct VertexNode /* 顶点表结点 */
{
  int in;    /* 顶点入度 */
  char data; /* 顶点域,存储顶点信息 */
  EdgeNode *firstedge;/* 边表头指针 */
}VertexNode, AdjList[MAXVEX];

typedef struct
{
  AdjList adjList;
  int numVertexes,numEdges; /* 图中当前顶点数和边数 */
}graphAdjList,*GraphAdjList;

5.邻接表广度优先遍历

Boolean visited[MAXSIZE]; /* 访问标志的数组 */
void BFSTraverse(GraphAdjList GL){
    
    //1.创建结点
    EdgeNode *p;
    
    Queue Q;
    InitQueue(&Q);
    

    //2.将访问标志数组全部置为"未访问状态FALSE"
    for(int i = 0; i < GL->numVertexes; i++)
        visited[i] = FALSE;
    
    //3.对遍历邻接表中的每一个顶点(对于连通图只会执行1次,这个循环是针对非连通图)
    for(int i = 0 ;i < GL->numVertexes;i++){
        //4.判断当前结点是否被访问过.
        if(!visited[i]){
            visited[i] = TRUE;
            //打印顶点
            printf("%c ",GL->adjList[i].data);
            
            EnQueue(&Q, i);
            while (!QueueEmpty(Q)) {
                DeQueue(&Q, &i);
                p = GL->adjList[i].firstedge;
                while (p) {
                    //判断
                    if(!visited[p->adjvex]){
                        visited[p->adjvex] = TRUE;
                         printf("%c ",GL->adjList[p->adjvex].data);
                        EnQueue(&Q, p->adjvex);
                    }
                    p = p->next;
                }
            }
            
        }
    }
    
}

二、图的深度优先遍历
1.邻接矩阵存储结构

typedef struct
{
    VertexType vexs[MAXVEX]; /* 顶点表 */
    EdgeType arc[MAXVEX][MAXVEX];/* 邻接矩阵,可看作边表 */
    int numVertexes, numEdges; /* 图中当前的顶点数和边数 */
}MGraph;

2.邻接矩阵遍历:

Boolean visited[MAXVEX]; /* 访问标志的数组 */
//1. 标识顶点是否被标记过;
//2. 选择从某一个顶点开始(注意:非连通图的情况)
//3. 进入递归,打印i点信息,标识; 边表
//4. [i][j] 是否等于1,没有变遍历过visted
void DFS(MGraph G,int i){
    //1.
    visited[i] = TRUE;
    printf("%c",G.vexs[i]);
    
    //2.0~numVertexes
    for(int j = 0; j < G.numVertexes;j++){
        if(G.arc[i][j] == 1 && !visited[j])
            DFS(G, j);
    }
}

void DFSTravese(MGraph G){
    //1.初始化
    for(int i=0;i<G.numVertexes;i++){
        visited[i] = FALSE;
    }
    
    //2.某一个顶点
    for(int i = 0;i<G.numVertexes;i++){
        if(!visited[i]){
            DFS(G, i);
        }
    }
}

3、邻接表遍历

void CreateALGraph(MGraph G,GraphAdjList *GL){
    
    //1.创建邻接表,并且设计邻接表的顶点数以及弧数
    *GL = (GraphAdjList)malloc(sizeof(graphAdjList));
    (*GL)->numVertexes = G.numVertexes;
    (*GL)->numEdges = G.numEdges;
    
    //2. 从邻接矩阵中将顶点信息输入
    for (int i = 0; i < G.numVertexes; i++) {
        //顶点入度为0
        (*GL)->adjList[i].in = 0;
        //顶点信息
        (*GL)->adjList[i].data = G.vexs[i];
        //顶点边表置空
        (*GL)->adjList[i].firstedge = NULL;
    }
    
    //3. 建立边表
    EdgeNode *e;
    for (int i = 0; i < G.numVertexes; i++) {
        for (int j = 0; j < G.numVertexes; j++) {
            if (G.arc[i][j] == 1) {
             
                //创建边表中的邻近结点 i->j
                e = (EdgeNode *)malloc(sizeof(EdgeNode));
                //邻接序号为j
                e->adjvex = j;
                //将当前结点的指向adjList[i]的顶点边表上
                e->next = (*GL)->adjList[i].firstedge;
                (*GL)->adjList[i].firstedge = e;
                //顶点j 上的入度++;
                (*GL)->adjList[j].in++;
                
//                //创建边表中的邻近结点 j->i
//                e = (EdgeNode *)malloc(sizeof(EdgeNode));
//                //邻接序号为j
//                e->adjvex = i;
//                //将当前结点的指向adjList[i]的顶点边表上
//                e->next = (*GL)->adjList[j].firstedge;
//                (*GL)->adjList[j].firstedge = e;
//                //顶点j 上的入度++;
//                (*GL)->adjList[i].in++;
            }
        }
    }
}


Boolean visited[MAXSIZE]; /* 访问标志的数组 */
/* 邻接表的深度优先递归算法 */
void DFS(GraphAdjList GL, int i)
{
    EdgeNode *p;
    visited[i] = TRUE;
    
    //2.打印顶点 A
    printf("%c ",GL->adjList[i].data);
    
    p = GL->adjList[i].firstedge;
    
    //3.
    while (p) {
        if(!visited[p->adjvex])
            DFS(GL,p->adjvex);
        
        p = p->next;
    }
    
}

/* 邻接表的深度遍历操作 */
void DFSTraverse(GraphAdjList GL)
{
    //1. 将访问记录数组默认置为FALSE
    for (int i = 0; i < GL->numVertexes; i++) {
        /*初始化所有顶点状态都是未访问过的状态*/
        visited[i] = FALSE;
    }

    //2. 选择一个顶点开始DFS遍历. 例如A
    for(int i = 0; i < GL->numVertexes; i++)
        //对未访问过的顶点调用DFS, 若是连通图则只会执行一次.
        if(!visited[i])
            DFS(GL, i);
}

相关文章

  • 图的遍历方式

    一、广度优先遍历1.构建邻接矩阵 2、循环队列的顺序存储结构(需要用到的队列结构与相关功能函数) 3、邻接矩阵广度...

  • 图的遍历方式-深度遍历/广度遍历

    深度优先遍历 深度优先遍历图的方法是,从图中某顶点v出发: 访问顶点v; 依次从v的未被访问的邻接点出发,对图进行...

  • 基本数据结构

    一.图二.树 一.图 1.图的遍历: 通过深度优先遍历DFS和广度优先遍历BFS两种方式。深度优先遍历0 1 2 ...

  • (*)剑指offer 面试题23:从上往下打印二叉树

    题目:本质上就是二叉树的层次遍历(其余的典型遍历方式还有先根遍历、中根遍历、后根遍历) 解法:类似于图的广度优先搜...

  • 数据结构—图的遍历

    根据图的存储方式可分为邻接矩阵的深度优先遍历和邻接表的深度优先遍历。 一、深度优先遍历 1、邻接矩阵的深度优先遍历...

  • 夯实JAVA基础之 -- Map

    Map HashMap TreeMap Map的遍历 HashMap 的遍历方式1: 遍历方式2: 遍历方式3...

  • 深度优先遍历

    问题描述 按照给定的起始顶点深度优先遍历给定的无向图,尝试所有可能的遍历方式,打印遍历过程中出现的最大深度。 输入...

  • 数据结构第二季 Day08 图的广度优先搜索(BFS)、深度优先

    一、图的广度优先搜索 1、图的遍历是怎么定义的?有哪两种常见的方式? 图的遍历:由图中某一顶点出发访问图中其余顶点...

  • 数据结构(三):二叉树遍历

    遍历方式 二叉树的常见遍历方式如下几种: 前序遍历: 访问根节点,前序遍历方式访问左子树,前序遍历方式访问右子树;...

  • 深度优先算法 DFS

    Depth First Search(DFS)数据结构中图的遍历方式之一(可以看做树的先序遍历)算法思想:从开始结...

网友评论

      本文标题:图的遍历方式

      本文链接:https://www.haomeiwen.com/subject/kdqzwhtx.html