美文网首页生物信息学与算法
如何快准狠地找到相关领域的经典文献?

如何快准狠地找到相关领域的经典文献?

作者: 生信宝典 | 来源:发表于2018-12-07 10:19 被阅读143次

    大多做科研的童鞋们大概都会遇到一个头疼的问题:怎么找文献?如何保证找到的文献都是相关领域的经典文献?之前我们有两篇推送:

    本文教你如何根据H5指数查找相关领域的高精尖经典文献。

    首先来了解一下什么是H指数、H5和H5中位数?

    • H指数(H-index):于2005年由美国加州大学学圣迭哥分校物理学家 Hirsch 教授提出,用于评价个人学术影响。Hirsch将该指数定义为:若某位科学家的Np篇论文中有h篇论文每一篇的引量都至少为h次,且其他(Np-h)篇论文中每篇的引量都<=h,那么这位科学家的H指数即为h。

    • H5指数:是指在过去整整5年中所发表文章的H指数;该指数打破了H指数不会随时间的推移而减少,只会增加或保持不变的情况。

    • H5中位数:是指出版物的H5指数所涵盖的所有文章获得的引用次数的中位值,即H5核内文献的被引频次的中位数。H5中位数指数不考虑 H核内的最低被引频次,而是考虑H核内所有文章的引用次数的中位值来评价期刊刊载的重大研究成果。(备注:H核内是该评价标准中的一个专有名词)

    谷歌学术计量(GSM:Google Scholar Metrics)公布了包括英、汉、葡、德、西、法、韩、日、荷、意10种语言的期刊H5和H5中位数排名,可以进入链接(https://scholar.google.com/citations?view_op=top_venues&hl=en) 查看不同类型期刊的排名。

    image

    Nature排名第一,随后是NEJM和Science,Cell排名第六。Nature communication和NAR影响因子虽在10左右,H5 index排名都在前15。PloS ONE虽不被看好,排名也在25之内,引用量还是很大的。

    点击数字,可以看到近5年文章的引用排名。

    Nature的前10高引领域分布广,包括深度学习,太阳能电池,登革热、范德华力、癌症基因组突变和微生物组,确实都是比较火的领域。

    image

    新英格兰杂志,各种癌症和慢性病,3篇Melanoma,2篇肺癌,2篇中风,一篇PD-1,诺贝儿热门领域

    image

    Cell杂志高引文章次数低于Nature和NEJM,排名第一的是衰老,最多的是CRISPR-Cas9,中国人的名字比较多,张峰、王浩毅、Lei Qi。剩下的是3D Genome和超级增强子

    image

    也可以查看某一个子类,在此我们以生物信息学相关的期刊为例,依次点击Categories —— Engineering & Computer Science —— Bioinformatics & Computational Biology即可。

    下面为谷歌学术计量统计的从2013-2017年生信期刊H5指数排名

    Publication h5-index h5-median
    Bioinformatics 110 188
    PLOS Computational Biology 79 112
    BMC Bioinformatics 61 86
    Briefings in Bioinformatics 56 81
    Database: The Journal of Biological Databases & Curation 43 63
    Journal of Theoretical Biology 42 69
    BMC Systems Biology 37 50
    GigaScience 36 44
    IEEE/ACM Transactions on Computational Biology and Bioinformatics 32 44
    Genomics, Proteomics & Bioinformatics 29 48
    Journal of Mathematical Biology 29 40
    Mathematical Biosciences 28 36
    Journal of Biomedical Semantics 26 34
    Journal of Computational Biology 23 37
    International Conference on Research in Computational Molecular Biology 21 37
    Mathematical biosciences and engineering: MBE 20 27
    Algorithms for Molecular Biology 19 26
    Pacific Symposium on Biocomputing 19 26
    Computational Biology and Chemistry 19 24
    Genomics & Informatics 18 30

    还可以点击各期刊的H5指数链接,查看构成某个期刊H5指数的核心文章。

    img img

    排第一的是做系统进化分析的RAxML, 第二的是Illumina测序质量过滤工具Trimmomatic (高通量测序的发展功不可没),第三和四的STARHTseq常用于处理转录组数据的比对和定量 (实际上STAR自带HTSeq的功能,易生信 - 转录组专题分析第4期开课啦)。

    这样,你便轻松找到了感兴趣领域里的高引量文献,慢慢享用吧~

    可能有人会质疑了,根据H5指数查找是否靠谱?

    不要担心,有学者专门做过统计,发现H5指数和H5中位数与传统意义上的期刊评价指数(IF、IF5、ES和AIS)均成极显著正相关,且相关系数大都在0.9以上,表明H5指数和H5中位数在对期刊的评价中有较大的优势。

    但同时这样的评价标准也是存在一些问题的,如不能查看谷歌的H5指数往年数据,因此不能进行横向比较;H5指数对于新创刊的期刊或新发文章没有时间优势,可能没办法及时追踪到最新的前沿。

    而跟进科研动态的途径有很多,比如1)设置学术期刊或出版公司的电子邮件提醒;2)关注感兴趣作者的社交账号;3)加入科学界的Facebook——Researchgate,里面有很多业内大咖,还有可能与世界同行进行交流;4)定期访问文章官网,查看文章最新动态;5)关注相关专业的论坛和网站等等,但这需要你勤快一点,多多浏览。

    找到想要的文献之后,就是如何获取全文了。Sci-Hub是一个提供大量自动且免费的付费学术论文的网站(https://lovescihub.wordpress.com/) ,于2011年由哈萨克斯坦研究生亚历珊卓·艾尔巴金创立,在Pubmed上输入文献名字,获取文章DOI号后,在上述网址中输入文献DOI号即可下载。

    相关文章

      网友评论

        本文标题:如何快准狠地找到相关领域的经典文献?

        本文链接:https://www.haomeiwen.com/subject/kegzcqtx.html