写代码很重要。。。
Github:https://github.com/shanxuanchen/FLStudy
安装
pip install --upgrade tensorflow_federated
// result
Successfully installed absl-py-0.9.0 attrs-19.3.0 ....
这个过程非常久,我用光纤外挂着香港VPN,也下了2个多小时。
Hello World
import collections
import numpy as np
import tensorflow as tf
import tensorflow_federated as tff
tf.compat.v1.enable_v2_behavior()
np.random.seed(0)
tff.federated_computation(lambda: 'Hello, World!')()
// result
b'Hello, World!'
Preparing the input data
我们需要先准备训练数据。联邦学习的训练数据来源于多个用户,并且允许各个用户non-iid的特性。恰好的是,tensorflow_federated这个包准备好了MNIST数据集。与原始的MNIST数据集不同的是,这个数据是经过处理的(https://arxiv.org/pdf/1812.01097.pdf
),使得原来的iid数据变得non-iid,模拟现实的数据孤岛,并且数据分布不同的情况。
emnist_train, emnist_test = tff.simulation.datasets.emnist.load_data()
print (emnist_train)
# 3383
print (len(emnist_train.client_ids))
print (emnist_train.client_ids)
example_dataset = emnist_train.create_tf_dataset_for_client(
emnist_train.client_ids[0])
example_element = next(iter(example_dataset))
example_element['label'].numpy()
from matplotlib import pyplot as plt
plt.imshow(example_element['pixels'].numpy(), cmap='gray', aspect='equal')
plt.grid(False)
_ = plt.show()
下面是其中一个MNIST的数据结果图
6.png
Emmm,由于我们要把像素数据压缩成一行,以及划分batch。我们还需要对数据进行预处理。
NUM_CLIENTS = 10
NUM_EPOCHS = 5
BATCH_SIZE = 20
SHUFFLE_BUFFER = 100
PREFETCH_BUFFER=10
def preprocess(dataset):
def batch_format_fn(element):
"""Flatten a batch `pixels` and return the features as an `OrderedDict`."""
return collections.OrderedDict(
x=tf.reshape(element['pixels'], [-1, 784]),
y=tf.reshape(element['label'], [-1, 1]))
return dataset.repeat(NUM_EPOCHS).shuffle(SHUFFLE_BUFFER).batch(
BATCH_SIZE).map(batch_format_fn).prefetch(PREFETCH_BUFFER)
Prepare Client Data
接下来我们要准备一下用于节点训练的client Data。
def make_federated_data(client_data, client_ids):
return [
preprocess(client_data.create_tf_dataset_for_client(x))
for x in client_ids
]
sample_clients = emnist_train.client_ids[0:NUM_CLIENTS]
federated_train_data = make_federated_data(emnist_train, sample_clients)
print('Number of client datasets: {l}'.format(l=len(federated_train_data)))
print('First dataset: {d}'.format(d=federated_train_data[0]))
Creating a model with Keras
跟传统iid数据的模型训练不同,联邦学习需要两个优化器,一个是client optimizer,一个是server optimizer。两个优化器的learning rate都不同,这个根据情况设定。因为client optimzier是学习本地数据的梯度,所以一般较小;server optimizer是用来整合相加,所以一般是1.0。
def model_fn():
# We _must_ create a new model here, and _not_ capture it from an external
# scope. TFF will call this within different graph contexts.
keras_model = create_keras_model()
return tff.learning.from_keras_model(
keras_model,
input_spec=preprocessed_example_dataset.element_spec,
loss=tf.keras.losses.SparseCategoricalCrossentropy(),
metrics=[tf.keras.metrics.SparseCategoricalAccuracy()])
iterative_process = tff.learning.build_federated_averaging_process(
model_fn,
client_optimizer_fn=lambda: tf.keras.optimizers.SGD(learning_rate=0.02),
server_optimizer_fn=lambda: tf.keras.optimizers.SGD(learning_rate=1.0))
Training the model on federated data
str(iterative_process.initialize.type_signature)
state = iterative_process.initialize()
state, metrics = iterative_process.next(state, federated_train_data)
print('round 1, metrics={}'.format(metrics))
为了使模型快速收敛,各节点重复使用一组数据进行训练。
NUM_ROUNDS = 11
for round_num in range(2, NUM_ROUNDS):
state, metrics = iterative_process.next(state, federated_train_data)
print('round {:2d}, metrics={}'.format(round_num, metrics))
// result
If using Keras pass *_constraint arguments to layers.
round 1, metrics=<sparse_categorical_accuracy=0.11419752985239029,loss=3.1054441928863525,keras_training_time_client_sum_sec=0.0>
round 2, metrics=<sparse_categorical_accuracy=0.13600823283195496,loss=2.933013439178467,keras_training_time_client_sum_sec=0.0>
round 3, metrics=<sparse_categorical_accuracy=0.15164609253406525,loss=2.8726162910461426,keras_training_time_client_sum_sec=0.0>
round 4, metrics=<sparse_categorical_accuracy=0.17942386865615845,loss=2.699212074279785,keras_training_time_client_sum_sec=0.0>
round 5, metrics=<sparse_categorical_accuracy=0.2043209820985794,loss=2.5611214637756348,keras_training_time_client_sum_sec=0.0>
round 6, metrics=<sparse_categorical_accuracy=0.20617283880710602,loss=2.5576889514923096,keras_training_time_client_sum_sec=0.0>
round 7, metrics=<sparse_categorical_accuracy=0.24156378209590912,loss=2.408731698989868,keras_training_time_client_sum_sec=0.0>
round 8, metrics=<sparse_categorical_accuracy=0.2781893014907837,loss=2.230600357055664,keras_training_time_client_sum_sec=0.0>
round 9, metrics=<sparse_categorical_accuracy=0.3288065791130066,loss=2.0912210941314697,keras_training_time_client_sum_sec=0.0>
round 10, metrics=<sparse_categorical_accuracy=0.33209875226020813,loss=1.9757834672927856,keras_training_time_client_sum_sec=0.0>
Displaying model metrics in TensorBoard
logdir = "/tmp/logs/scalars/training/"
summary_writer = tf.summary.create_file_writer(logdir)
state = iterative_process.initialize()
with summary_writer.as_default():
for round_num in range(1, NUM_ROUNDS):
state, metrics = iterative_process.next(state, federated_train_data)
for name, value in metrics._asdict().items():
tf.summary.scalar(name, value, step=round_num)
通过打开tensorboard可以看到loss的变化。
image.pngConclution
Tensorflow-federate这个包是支持模型和参数自定义的,下一个实验就是自定义模型来跑联邦学习,争取后天可以完成。
网友评论