TreeMap

作者: Joker____ | 来源:发表于2018-03-26 16:12 被阅读0次

    简述

    何为TreeMap?
    TreeMap是一个二叉排序树构成的map。

    TreeMap怎么实现二叉树的平衡?
    红黑树

    综上所属TreeMap是一个map + 红黑树的实现。


    源码分析

    类图

    image.png

    根据类图可知TreeMap继承AbstractMap和实现了NavigableMap。通过继承AbstractMap来共用父类的非私有方法,便于维护。通过实现了NavigableMap接口来提供一些便利的查询操作。(这是顺序结构通常需要实现的接口)

    数据结构

    /**
         * 比较器
         */
        private final Comparator<? super K> comparator;
    
    /**
         * 根节点
         */
        private transient Entry<K,V> root;
    
        /**
         * The number of entries in the tree
         */
        private transient int size = 0;
    
        /**
         * 树节点修改次数
         */
        private transient int modCount = 0;
    

    节点的数据结构

     static final class Entry<K,V> implements Map.Entry<K,V> {
            K key;
            V value;
            Entry<K,V> left;//左节点
            Entry<K,V> right;//右节点
            Entry<K,V> parent;//父节点
            boolean color = BLACK;//颜色标记
    }
    

    基本操作

    put

    public V put(K key, V value) {
          Entry<K,V> t = root;
          //树为空
          if (t == null) {
              compare(key, key); // type (and possibly null) check
    
              root = new Entry<>(key, value, null);
              size = 1;
              modCount++;
              return null;
          }
          int cmp;
          Entry<K,V> parent;
          // split comparator and comparable paths
          Comparator<? super K> cpr = comparator;
          //有默认比较器
          if (cpr != null) {
              do {
                  parent = t;
                  cmp = cpr.compare(key, t.key);
                  if (cmp < 0)
                      t = t.left;
                  else if (cmp > 0)
                      t = t.right;
                  else
                      return t.setValue(value);
              } while (t != null);
          }
          //无默认比较器
          else {
              if (key == null)
                  throw new NullPointerException();
              @SuppressWarnings("unchecked")
                  Comparable<? super K> k = (Comparable<? super K>) key;
              do {
                  parent = t;
                  cmp = k.compareTo(t.key);
                  if (cmp < 0)
                      t = t.left;
                  else if (cmp > 0)
                      t = t.right;
                  else
                      return t.setValue(value);
              } while (t != null);
          }
          Entry<K,V> e = new Entry<>(key, value, parent);
          if (cmp < 0)
              parent.left = e;
          else
              parent.right = e;
          //变树,为了保证平衡
          fixAfterInsertion(e);
          size++;
          modCount++;
          return null;
      }
    
    //插入后维持平衡
    private void fixAfterInsertion(Entry<K,V> x) {
          // 插入的节点为红色节点
          x.color = RED;
    
          while (x != null && x != root && x.parent.color == RED) {
              //当前节点为左节点
              if (parentOf(x) == leftOf(parentOf(parentOf(x)))) {
                  Entry<K,V> y = rightOf(parentOf(parentOf(x)));
                  //叔叔节点是红色
                  if (colorOf(y) == RED) {
                      setColor(parentOf(x), BLACK);
                      setColor(y, BLACK);
                      setColor(parentOf(parentOf(x)), RED);
                      x = parentOf(parentOf(x));
                  } else {//叔叔节点是黑色
                      if (x == rightOf(parentOf(x))) {
                          x = parentOf(x);
                          //左旋
                          rotateLeft(x);
                      }
                      setColor(parentOf(x), BLACK);
                      setColor(parentOf(parentOf(x)), RED);
                      //右旋转
                      rotateRight(parentOf(parentOf(x)));
                  }
              } else {
                  Entry<K,V> y = leftOf(parentOf(parentOf(x)));
                 //叔叔节点是红色
                  if (colorOf(y) == RED) {
                      setColor(parentOf(x), BLACK);
                      setColor(y, BLACK);
                      setColor(parentOf(parentOf(x)), RED);
                      x = parentOf(parentOf(x));
                  } else {
                      if (x == leftOf(parentOf(x))) {
                          x = parentOf(x);
                          //右旋转
                          rotateRight(x);
                      }
                      setColor(parentOf(x), BLACK);
                      setColor(parentOf(parentOf(x)), RED);
                      //左旋转
                      rotateLeft(parentOf(parentOf(x)));
                  }
              }
          }
          root.color = BLACK;
      }
    
    • 先通过查找树的方式找到合适的位置把节点放入
    • 新插入的节点可能导致树不平衡
    • 根据红黑树的方式变色、左旋、右旋保证树的平衡

    remove

    public V remove(Object key) {
            Entry<K,V> p = getEntry(key);
            if (p == null)
                return null;
    
            V oldValue = p.value;
            deleteEntry(p);
            return oldValue;
    }
    
    public void remove() {
                if (lastReturned == null)
                    throw new IllegalStateException();
                if (modCount != expectedModCount)
                    throw new ConcurrentModificationException();
                // deleted entries are replaced by their successors
                if (lastReturned.left != null && lastReturned.right != null)
                    next = lastReturned;
                deleteEntry(lastReturned);
                expectedModCount = modCount;
                lastReturned = null;
            }
    private void deleteEntry(Entry<K,V> p) {
            modCount++;
            size--;
    
            // If strictly internal, copy successor's element to p and then make p
            // 如果左右都非空,则找到继承者来代替它的位置
            if (p.left != null && p.right != null) {
                Entry<K,V> s = successor(p);
                p.key = s.key;
                p.value = s.value;
                p = s;
            } // p has 2 children
    
            // Start fixup at replacement node, if it exists.
            Entry<K,V> replacement = (p.left != null ? p.left : p.right);
    
            if (replacement != null) {
                // Link replacement to parent
                replacement.parent = p.parent;
                if (p.parent == null)
                    root = replacement;
                else if (p == p.parent.left)
                    p.parent.left  = replacement;
                else
                    p.parent.right = replacement;
    
                // Null out links so they are OK to use by fixAfterDeletion.
                p.left = p.right = p.parent = null;
    
                // Fix replacement
                if (p.color == BLACK)
                    fixAfterDeletion(replacement);
            } else if (p.parent == null) { // return if we are the only node.
                root = null;
            } else { //  No children. Use self as phantom replacement and unlink.
                if (p.color == BLACK)
                    fixAfterDeletion(p);
    
                if (p.parent != null) {
                    if (p == p.parent.left)
                        p.parent.left = null;
                    else if (p == p.parent.right)
                        p.parent.right = null;
                    p.parent = null;
                }
            }
        }
    
    /** From CLR */
        private void fixAfterDeletion(Entry<K,V> x) {
            while (x != root && colorOf(x) == BLACK) {
                if (x == leftOf(parentOf(x))) {
                    Entry<K,V> sib = rightOf(parentOf(x));
    
                    if (colorOf(sib) == RED) {
                        setColor(sib, BLACK);
                        setColor(parentOf(x), RED);
                        rotateLeft(parentOf(x));
                        sib = rightOf(parentOf(x));
                    }
    
                    if (colorOf(leftOf(sib))  == BLACK &&
                        colorOf(rightOf(sib)) == BLACK) {
                        setColor(sib, RED);
                        x = parentOf(x);
                    } else {
                        if (colorOf(rightOf(sib)) == BLACK) {
                            setColor(leftOf(sib), BLACK);
                            setColor(sib, RED);
                            rotateRight(sib);
                            sib = rightOf(parentOf(x));
                        }
                        setColor(sib, colorOf(parentOf(x)));
                        setColor(parentOf(x), BLACK);
                        setColor(rightOf(sib), BLACK);
                        rotateLeft(parentOf(x));
                        x = root;
                    }
                } else { // symmetric
                    Entry<K,V> sib = leftOf(parentOf(x));
    
                    if (colorOf(sib) == RED) {
                        setColor(sib, BLACK);
                        setColor(parentOf(x), RED);
                        rotateRight(parentOf(x));
                        sib = leftOf(parentOf(x));
                    }
    
                    if (colorOf(rightOf(sib)) == BLACK &&
                        colorOf(leftOf(sib)) == BLACK) {
                        setColor(sib, RED);
                        x = parentOf(x);
                    } else {
                        if (colorOf(leftOf(sib)) == BLACK) {
                            setColor(rightOf(sib), BLACK);
                            setColor(sib, RED);
                            rotateLeft(sib);
                            sib = leftOf(parentOf(x));
                        }
                        setColor(sib, colorOf(parentOf(x)));
                        setColor(parentOf(x), BLACK);
                        setColor(leftOf(sib), BLACK);
                        rotateRight(parentOf(x));
                        x = root;
                    }
                }
            }
    
            setColor(x, BLACK);
        }
    
    • 找到需要删除的节点
    • 找到它的字节点中能够替换它的节点
    • 变树保持平衡

    常见问题

    树的结构有何优点?
    与线性表对比,线性表的平均查找次数=n/2,平衡二叉树平均查找次数=logn。线性表查找只有在极小的数据量下才会有优势。
    与hash对比,在查看速度看树可能比不上hash结构。但是二叉树的结构为范围检索提供了方便。

    有几种平衡树
    二叉树:AVL树、红黑树
    n叉树:B-树、B+树

    相关文章

      网友评论

          本文标题:TreeMap

          本文链接:https://www.haomeiwen.com/subject/kfdrcftx.html