2018-12-06
来看看udacity的深度学习课的lstm实现代码
RNN和LSTM
假设你有一个事件序列,这个序列是根据时间变化的,希望根据某个时间点的事件进行预测,并且把以前的事件也考虑在内,因为不可能将之前每个时间点的状态传递给当前时间点,所以RNN通过每个时间点都对前面的时间点进行总结传递给当前状态,就可以学习到序列的所有节点状态
RNN-rolled
RNN-unrolled
上下两幅图是等价的
其中序列应该是逐个读入RNN而不是同时读取的
存在问题
RNN的反向传播:
因为RNN在时间上共用权重,所以更新时非常不稳定,会出现梯度爆炸或梯度下降
解决方法
-
gradient clipping(梯度裁剪)
梯度裁剪 -
lstm(长短期模型)
记忆单元
代码
读入数据
仍然是text8.zip
创建一个小的验证集
valid_size = 1000
valid_text = text[:valid_size]
train_text = text[valid_size:]
train_size = len(train_text)
print(train_size, train_text[:64])
print(valid_size, valid_text[:64])
99999000 ons anarchists advocate social relations based upon voluntary as
1000 anarchism originated as a term of abuse first used against earl
建立字母到数字的映射
vocabulary_size = len(string.ascii_lowercase) + 1 # [a-z] + ' '
first_letter = ord(string.ascii_lowercase[0])
def char2id(char):
if char in string.ascii_lowercase:
return ord(char) - first_letter + 1
elif char == ' ':
return 0
else:
print('Unexpected character: %s' % char)
return 0
def id2char(dictid):
if dictid > 0:
return chr(dictid + first_letter - 1)
else:
return ' '
print(char2id('a'), char2id('z'), char2id(' '), char2id('ï'))
print(id2char(1), id2char(26), id2char(0))
1 26 0 Unexpected character: ï
0
a z
为模型建立训练数据
batch_size=64
num_unrollings=10
class BatchGenerator(object):
def __init__(self, text, batch_size, num_unrollings):
self._text = text
self._text_size = len(text)
self._batch_size = batch_size
self._num_unrollings = num_unrollings
segment = self._text_size // batch_size
self._cursor = [ offset * segment for offset in range(batch_size)]
self._last_batch = self._next_batch()
def _next_batch(self):
"""Generate a single batch from the current cursor position in the data."""
batch = np.zeros(shape=(self._batch_size, vocabulary_size), dtype=np.float)
for b in range(self._batch_size):
batch[b, char2id(self._text[self._cursor[b]])] = 1.0
self._cursor[b] = (self._cursor[b] + 1) % self._text_size
#这里是为了循环拿数据
return batch
def next(self):
"""Generate the next array of batches from the data. The array consists of
the last batch of the previous array, followed by num_unrollings new ones.
"""
batches = [self._last_batch]
#这里的batches我认为应该叫序列比较好分清楚, num_unrollings的长度就是batches的长度
for step in range(self._num_unrollings):
batches.append(self._next_batch())
self._last_batch = batches[-1]
#每次会取上次的最后一序列
return batches
train_batches = BatchGenerator(train_text, batch_size, num_unrollings)
valid_batches = BatchGenerator(valid_text, 1, 1)
batch_size是批次大小,num_unrollings 是序列长度
为了保证每次传递的批次对应的字符是一样的,所以设置了cursor游标
比如'abcdefghij'是长度为10的字符串,2是批次大小,序列长度也是2
下面的输出,一个array是一个批次,多少个array就是多少个序列
这里要讲清楚,批次大小为多少就认定有多少个字符是一个组,比如批次为2,那么认定有俩词,分别是‘abcde’和‘fhij',那么对应的批次当然是’a,f','b,h'等等,可以这样理解多少个批次就是多少个首字母,那么当然就有多少个词
因为每次也要返回上次的最后一个序列,所以每次有三个序列
test = BatchGenerator('abcdefghij',2, 2 )
test.next()
[array([[0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., #a
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., #f
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]),
array([[0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., #b
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., #g
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]),
array([[0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., #c
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., #h
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]])]
工具函数
- 展示概率最大的字符
def characters(probabilities):
"""Turn a 1-hot encoding or a probability distribution over the possible
characters back into its (most likely) character representation."""
return [id2char(c) for c in np.argmax(probabilities, 1)]
- 将序列表示为字符
def batches2string(batches):
"""Convert a sequence of batches back into their (most likely) string
representation."""
s = [''] * batches[0].shape[0]
for b in batches:
s = [''.join(x) for x in zip(s, characters(b))]
return s
简单的LSTM模型
num_nodes = 64
graph = tf.Graph()
with graph.as_default():
num_nodes 是lstm cell的个数
定义变量
# Parameters:
# Input gate: input, previous output, and bias.
ix = tf.Variable(tf.truncated_normal([vocabulary_size, num_nodes], -0.1, 0.1))
im = tf.Variable(tf.truncated_normal([num_nodes, num_nodes], -0.1, 0.1))
ib = tf.Variable(tf.zeros([1, num_nodes]))
# Forget gate: input, previous output, and bias.
fx = tf.Variable(tf.truncated_normal([vocabulary_size, num_nodes], -0.1, 0.1))
fm = tf.Variable(tf.truncated_normal([num_nodes, num_nodes], -0.1, 0.1))
fb = tf.Variable(tf.zeros([1, num_nodes]))
# Memory cell: input, state and bias.
cx = tf.Variable(tf.truncated_normal([vocabulary_size, num_nodes], -0.1, 0.1))
cm = tf.Variable(tf.truncated_normal([num_nodes, num_nodes], -0.1, 0.1))
cb = tf.Variable(tf.zeros([1, num_nodes]))
# Output gate: input, previous output, and bias.
ox = tf.Variable(tf.truncated_normal([vocabulary_size, num_nodes], -0.1, 0.1))
om = tf.Variable(tf.truncated_normal([num_nodes, num_nodes], -0.1, 0.1))
ob = tf.Variable(tf.zeros([1, num_nodes]))
# Variables saving state across unrollings.
saved_output = tf.Variable(tf.zeros([batch_size, num_nodes]), trainable=False)
saved_state = tf.Variable(tf.zeros([batch_size, num_nodes]), trainable=False)
# Classifier weights and biases.
w = tf.Variable(tf.truncated_normal([num_nodes, vocabulary_size], -0.1, 0.1))
b = tf.Variable(tf.zeros([vocabulary_size]))
再把lstm的图拿出来回忆一下:
lstm cell
上述代码提到了一下几个
- input gate: ix, im, ib
- forget gate: fx, fm, fb
- memory cell : cx, cm, cb
- output cell : ox, om, ob
- saved_output, saved_state:初始的ht和ct
- classifier: w,b最后用来分类的权重和偏置
定义lstm cell
# Definition of the cell computation.
def lstm_cell(i, o, state):
"""Create a LSTM cell. See e.g.: http://arxiv.org/pdf/1402.1128v1.pdf
Note that in this formulation, we omit (省略)the various connections between the
previous state and the gates."""
input_gate = tf.sigmoid(tf.matmul(i, ix) + tf.matmul(o, im) + ib)
forget_gate = tf.sigmoid(tf.matmul(i, fx) + tf.matmul(o, fm) + fb)
output_gate = tf.sigmoid(tf.matmul(i, ox) + tf.matmul(o, om) + ob)
update = tf.matmul(i, cx) + tf.matmul(o, cm) + cb
state = forget_gate * state + input_gate * tf.tanh(update)
return output_gate * tf.tanh(state), state
LSTM
根据图来看,代码中的对应
input_gate: i
forget_gate: f
output_gate : o
update : g
三个输入
state: ct-1
o: ht-1
i :xt
输出分别为: ht, ct
定义输入接口
# Input data.
train_data = list()
for _ in range(num_unrollings + 1):
train_data.append(
tf.placeholder(tf.float32, shape=[batch_size,vocabulary_size]))
train_inputs = train_data[:num_unrollings]
train_labels = train_data[1:] # labels are inputs shifted by one time step.
训练数据的标签是序列向右位移一位
LSTM 循环训练
# Unrolled LSTM loop.
outputs = list()
output = saved_output
state = saved_state
for i in train_inputs:
output, state = lstm_cell(i, output, state)
outputs.append(output)
定义loss
取自博客:
因为不是顺序执行语言,一般模型如果不是相关的语句,其执行是没有先后顺序的,control_dependencies 的作用就是建立先后顺序,保证前面两句被执行后,才执行后面的内容。
这里也就是先把 saved_output 和 saved_state 保存之后,再计算 logits 和 loss。否则因为下面计算时没有关联到 saved_output 和 saved_state,如果不用 control_dependencies 那上面两句保存就不会被优化语句触发。
tf.concat(0, values) 是指在 0 维上把 values 连接起来。本来 outputs 是一个 list,每一个元素都是一个27维向量表示一个字母。
# State saving across unrollings.
with tf.control_dependencies([saved_output.assign(output),
saved_state.assign(state)]):
# Classifier.
logits = tf.nn.xw_plus_b(tf.concat(outputs, 0), w, b)
loss = tf.reduce_mean(
tf.nn.softmax_cross_entropy_with_logits(
labels=tf.concat(train_labels, 0), logits=logits))
定义训练优化
clip_by_global_norm 的具体计算是,先计算 global_norm ,也就是整个 W 的模(二范数)。看这个模是否大于文中的1.25,如果大于,则结果等于 gradients * 1.25 / global_norm,如果不大于,就不变。
最后,apply_gradients。这里传入的 global_step 是会被修改的,每次加一,这样下次计算 learning_rate 的时候就会使用新的 global_step 值。
# Optimizer.
global_step = tf.Variable(0)
learning_rate = tf.train.exponential_decay(
10.0, global_step, 5000, 0.1, staircase=True)
optimizer = tf.train.GradientDescentOptimizer(learning_rate)
gradients, v = zip(*optimizer.compute_gradients(loss))
gradients, _ = tf.clip_by_global_norm(gradients, 1.25)
#防止梯度爆炸
optimizer = optimizer.apply_gradients(
zip(gradients, v), global_step=global_step)
定义预测
# Predictions.
train_prediction = tf.nn.softmax(logits)
取样并且验证评估
# Sampling and validation eval: batch 1, no unrolling.
sample_input = tf.placeholder(tf.float32, shape=[1, vocabulary_size])
saved_sample_output = tf.Variable(tf.zeros([1, num_nodes]))
saved_sample_state = tf.Variable(tf.zeros([1, num_nodes]))
reset_sample_state = tf.group(
saved_sample_output.assign(tf.zeros([1, num_nodes])),
saved_sample_state.assign(tf.zeros([1, num_nodes])))
sample_output, sample_state = lstm_cell(
sample_input, saved_sample_output, saved_sample_state)
with tf.control_dependencies([saved_sample_output.assign(sample_output),
saved_sample_state.assign(sample_state)]):
sample_prediction = tf.nn.softmax(tf.nn.xw_plus_b(sample_output, w, b))
训练过程
这里评判训练的标注是交叉熵困惑度
根据信息论,perplexity wikipedia定义 和 cross_entropy 的关系如下:
num_steps = 7001
summary_frequency = 100
with tf.Session(graph=graph) as session:
tf.global_variables_initializer().run()
print('Initialized')
mean_loss = 0
for step in range(num_steps):
batches = train_batches.next() #循环导入batches训练序列
feed_dict = dict()
for i in range(num_unrollings + 1):
feed_dict[train_data[i]] = batches[i] #训练数据列表,每个列表是个batch
_, l, predictions, lr = session.run(
[optimizer, loss, train_prediction, learning_rate], feed_dict=feed_dict)
mean_loss += l
if step % summary_frequency == 0:
if step > 0:
mean_loss = mean_loss / summary_frequency
# The mean loss is an estimate of the loss over the last few batches.也就是前几次的平均
print(
'Average loss at step %d: %f learning rate: %f' % (step, mean_loss, lr))
mean_loss = 0
'''这里注意几个辅助函数'''
labels = np.concatenate(list(batches)[1:])
print('Minibatch perplexity: %.2f' % float(
np.exp(logprob(predictions, labels))))
if step % (summary_frequency * 10) == 0:
# Generate some samples.
'''这里用来生成一些可视化的样本'''
print('=' * 80)
for _ in range(5):
feed = sample(random_distribution())
sentence = characters(feed)[0]
reset_sample_state.run()
for _ in range(79):
prediction = sample_prediction.eval({sample_input: feed})
feed = sample(prediction)
sentence += characters(feed)[0]
print(sentence)
print('=' * 80)
# Measure validation set perplexity.
reset_sample_state.run()
valid_logprob = 0
for _ in range(valid_size):
b = valid_batches.next()
predictions = sample_prediction.eval({sample_input: b[0]})
valid_logprob = valid_logprob + logprob(predictions, b[1])
print('Validation set perplexity: %.2f' % float(np.exp(
valid_logprob / valid_size)))
几个辅助函数介绍:
logprob: 计算label和预测值的交叉熵。
先回忆一下 cross_entropy:
那么,
def logprob(predictions, labels):
"""Log-probability of the true labels in a predicted batch."""
predictions[predictions < 1e-10] = 1e-10
return np.sum(np.multiply(labels, -np.log(predictions))) / labels.shape[0]
random_distribution():[0,1]区间内生成一个正态分布,值加和为1
def random_distribution():
"""Generate a random column of probabilities."""
b = np.random.uniform(0.0, 1.0, size=[1, vocabulary_size])
return b/np.sum(b, 1)[:,None]
sample_distribution(distribution):随机选择[0,len(distribution)]中任意一个整数值
def sample_distribution(distribution):
"""Sample one element from a distribution assumed to be an array of normalized
probabilities.
"""
r = random.uniform(0, 1)
s = 0
for i in range(len(distribution)):
s += distribution[i]
if s >= r:
return i
return len(distribution) - 1
sample(prediction):随机one-hot
def sample(prediction):
"""Turn a (column) prediction into 1-hot encoded samples."""
p = np.zeros(shape=[1, vocabulary_size], dtype=np.float)
p[0, sample_distribution(prediction[0])] = 1.0
return p
网友评论