1.研究背景
随着人工智能技术发展的日益成熟,无论在人们的生活还是学习中,都有人工智能的影子。在科技发展的过程中,硬件方面的提升非常迅速。近几年,深度学习在硬件的提升下,开始迈向了新的步伐。图像分割是人工智能的一个方向,分类结果的精确度直接受分割结果影响,所以分割起到至关重要的作用。 中医对舌苔诊断依据是“望诊”,这是传统的手段。随着现代化技术的发展,对中医而言智能化和客观化是必不可少的方式,现代的智能化技术对中医辅助帮助很大,深度学习在中医领域可以进行辅助诊断和效果的提升,也对中医的发展具有推动作用。
2.图片演示
2.png 3.png3.视频演示
改进Unet的舌头分割系统(源码&教程)_哔哩哔哩_bilibili
4.舌苔分割数据集
数据加载
这一步,可以做很多事情,说白了,无非就是图片怎么加载,标签怎么定义,为了增加算法的鲁棒性或者增加数据集,可以做一些数据增强的操作。
既然是处理数据,那么我们先看下数据都是什么样的,再决定怎么处理。
5.png 6.png
Pytorch 给我们提供了一个方法,方便我们加载数据,我们可以使用这个框架,去加载我们的数据。看下伪代码:
# ================================================================== #
# Input pipeline for custom dataset #
# ================================================================== #
# You should build your custom dataset as below.
class CustomDataset(torch.utils.data.Dataset):
def __init__(self):
# TODO
# 1. Initialize file paths or a list of file names.
pass
def __getitem__(self, index):
# TODO
# 1. Read one data from file (e.g. using numpy.fromfile, PIL.Image.open).
# 2. Preprocess the data (e.g. torchvision.Transform).
# 3. Return a data pair (e.g. image and label).
pass
def __len__(self):
# You should change 0 to the total size of your dataset.
return 0
# You can then use the prebuilt data loader.
custom_dataset = CustomDataset()
train_loader = torch.utils.data.DataLoader(dataset=custom_dataset,
batch_size=64,
shuffle=True)
5.Unet算法
U-Net算法是一种适合医学影像分割的网络模型。医学领域进行视觉分割的一大难题是数据比较少,而U-Net模型,可以相对较少的数据,准确预测肿瘤存在的位置。它是比较早期的全卷积网络语义分割的算法,使用包含压缩路径和扩展路径的对称U形结构,当然也可以应用再其他得数据收集困难得场景中。
image.png
6.Unet算法改进
本文提出了Transformer-UNet,通过在原始图像中添加Transformer Block而不是在UNet中添加Feature map
首先设计一个典型的UNet作为CNN结构,使用双线性插值作为上采样方法,max-pooling作为下采样方法。为了方便实现,作者设计了一个几乎对称的网络,它可以很容易修改注意力模块和Transformer模块。然而,在T-Unet中,编码器和解码器并不直接连接,这将在本节中解释。
Transformer作为一个以序列数据为输入的模型,对于分割任务Transformer则需要1D数据。因此,需要将一幅 原始图像平展成 维的数组,其中n×n为图像patch的大小, 为数组序列的长度。遵循Dosovitskiy等人所提的方法,将整个图像分割成不同的平方块,n是正方形边缘的长度。为了简化实现过程,在大多数情况下假设H=W和H,W可以被n整除。
image.png与NLP Transformer略有不同,如图1所示。ViT将LayerNorm放在Multi-Head Attention和MLP之前,以确保输入值不会太大而无法处理。此外,ViT保留了Vaswani等人(2017)的主要设计,如Multi-Head Self-Attention和MLP层。Dosovitskiy等人(2021)进一步添加了一个可学习的数组tensor,用于在将整个序列输入到存储在T-Unet中的Transformer之前进行位置嵌入。
进一步修改ViT,用ELU代替GELU作为在 Transformer MLP层的激活函数,因为作者观察到ELU在实验中表现更好。与RELU和GELU相比,ELU在Transformer中使用较少,其定义为:
本文认为ELU是有用的,因为CT图像中的负值与正值同样重要。在实验中将超参数α设为1。
MHA为Multi-Head Attention layers, LN为layer normalization, 为image patches, 为Transformer layer number。对于原始图像的处理,在ViT中通过在整个图像上应用一个核大小为 的卷积操作进行Position Embedding过程。
Transformer在提取局部特征方面不如CNN高效,所以作者遵循UNet的设计在T-Unet中添加了一个附加的编码器。此编码器不直接与解码器连接。
相反,它输出具有不同接受域的特征映射,并将它们与解码器中的特征映射连接起来,如图2所示。解码器以Transformer的输出作为输入,具体来说,对于采用大小为 的序列的Transformer,将其输出Reshape为大小为 并将其直接送入解码器。通过这样做保证了解码器的输入包含了不同图像patch的信息,因此对最终预测更好。
由于在TUnet中处理原始图像,原始图像和图像patch的大小非常重要,因为它们决定了Transformer模型的大小和运行速度。由于选择CT82作为实验数据集,其中包含大小为 的高分辨率CT切片,因此选择 作为图像patch大小,因此构建的序列长度为1024。因此,在实验中解码器的输入尺寸为 ,进一步通过双线性插值将其Reshape为尺寸为 。作者按照Ronneberger等人的方法在解码器中添加了连接部分,并相应地构建了编码器。为了最小化模型,同时保持其效率,作者设计的Transformer模块中的注意力头和总层数分别为8和6。
7.代码实现
# Copyright 2020 Division of Medical Image Computing, German Cancer Research Center (DKFZ), Heidelberg, Germany
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
import torch
from nnunet.network_architecture.custom_modules.conv_blocks import BasicResidualBlock, ResidualLayer
from nnunet.network_architecture.generic_UNet import Upsample
from nnunet.network_architecture.generic_modular_UNet import PlainConvUNetDecoder, get_default_network_config
from nnunet.network_architecture.neural_network import SegmentationNetwork
from nnunet.training.loss_functions.dice_loss import DC_and_CE_loss
from torch import nn
from torch.optim import SGD
from torch.backends import cudnn
class ResidualUNetEncoder(nn.Module):
def __init__(self, input_channels, base_num_features, num_blocks_per_stage, feat_map_mul_on_downscale,
pool_op_kernel_sizes, conv_kernel_sizes, props, default_return_skips=True,
max_num_features=480, block=BasicResidualBlock):
"""
Following UNet building blocks can be added by utilizing the properties this class exposes (TODO)
this one includes the bottleneck layer!
:param input_channels:
:param base_num_features:
:param num_blocks_per_stage:
:param feat_map_mul_on_downscale:
:param pool_op_kernel_sizes:
:param conv_kernel_sizes:
:param props:
"""
super(ResidualUNetEncoder, self).__init__()
self.default_return_skips = default_return_skips
self.props = props
self.stages = []
self.stage_output_features = []
self.stage_pool_kernel_size = []
self.stage_conv_op_kernel_size = []
assert len(pool_op_kernel_sizes) == len(conv_kernel_sizes)
num_stages = len(conv_kernel_sizes)
if not isinstance(num_blocks_per_stage, (list, tuple)):
num_blocks_per_stage = [num_blocks_per_stage] * num_stages
else:
assert len(num_blocks_per_stage) == num_stages
self.num_blocks_per_stage = num_blocks_per_stage # decoder may need this
self.initial_conv = props['conv_op'](input_channels, base_num_features, 3, padding=1, **props['conv_op_kwargs'])
self.initial_norm = props['norm_op'](base_num_features, **props['norm_op_kwargs'])
self.initial_nonlin = props['nonlin'](**props['nonlin_kwargs'])
current_input_features = base_num_features
for stage in range(num_stages):
current_output_features = min(base_num_features * feat_map_mul_on_downscale ** stage, max_num_features)
current_kernel_size = conv_kernel_sizes[stage]
current_pool_kernel_size = pool_op_kernel_sizes[stage]
current_stage = ResidualLayer(current_input_features, current_output_features, current_kernel_size, props,
self.num_blocks_per_stage[stage], current_pool_kernel_size, block)
self.stages.append(current_stage)
self.stage_output_features.append(current_output_features)
self.stage_conv_op_kernel_size.append(current_kernel_size)
self.stage_pool_kernel_size.append(current_pool_kernel_size)
# update current_input_features
current_input_features = current_output_features
self.stages = nn.ModuleList(self.stages)
def forward(self, x, return_skips=None):
"""
:param x:
:param return_skips: if none then self.default_return_skips is used
:return:
"""
skips = []
x = self.initial_nonlin(self.initial_norm(self.initial_conv(x)))
for s in self.stages:
x = s(x)
if self.default_return_skips:
skips.append(x)
if return_skips is None:
return_skips = self.default_return_skips
if return_skips:
return skips
else:
return x
@staticmethod
def compute_approx_vram_consumption(patch_size, base_num_features, max_num_features,
num_modalities, pool_op_kernel_sizes, num_conv_per_stage_encoder,
feat_map_mul_on_downscale, batch_size):
npool = len(pool_op_kernel_sizes) - 1
current_shape = np.array(patch_size)
tmp = (num_conv_per_stage_encoder[0] * 2 + 1) * np.prod(current_shape) * base_num_features \
+ num_modalities * np.prod(current_shape)
num_feat = base_num_features
for p in range(1, npool + 1):
current_shape = current_shape / np.array(pool_op_kernel_sizes[p])
num_feat = min(num_feat * feat_map_mul_on_downscale, max_num_features)
num_convs = num_conv_per_stage_encoder[p] * 2 + 1 # + 1 for conv in skip in first block
print(p, num_feat, num_convs, current_shape)
tmp += num_convs * np.prod(current_shape) * num_feat
return tmp * batch_size
class ResidualUNetDecoder(nn.Module):
def __init__(self, previous, num_classes, num_blocks_per_stage=None, network_props=None, deep_supervision=False,
upscale_logits=False, block=BasicResidualBlock):
super(ResidualUNetDecoder, self).__init__()
self.num_classes = num_classes
self.deep_supervision = deep_supervision
"""
We assume the bottleneck is part of the encoder, so we can start with upsample -> concat here
"""
previous_stages = previous.stages
previous_stage_output_features = previous.stage_output_features
previous_stage_pool_kernel_size = previous.stage_pool_kernel_size
previous_stage_conv_op_kernel_size = previous.stage_conv_op_kernel_size
if network_props is None:
self.props = previous.props
else:
self.props = network_props
if self.props['conv_op'] == nn.Conv2d:
transpconv = nn.ConvTranspose2d
upsample_mode = "bilinear"
elif self.props['conv_op'] == nn.Conv3d:
transpconv = nn.ConvTranspose3d
upsample_mode = "trilinear"
else:
raise ValueError("unknown convolution dimensionality, conv op: %s" % str(self.props['conv_op']))
if num_blocks_per_stage is None:
num_blocks_per_stage = previous.num_blocks_per_stage[:-1][::-1]
assert len(num_blocks_per_stage) == len(previous.num_blocks_per_stage) - 1
self.stage_pool_kernel_size = previous_stage_pool_kernel_size
self.stage_output_features = previous_stage_output_features
self.stage_conv_op_kernel_size = previous_stage_conv_op_kernel_size
num_stages = len(previous_stages) - 1 # we have one less as the first stage here is what comes after the
# bottleneck
self.tus = []
self.stages = []
self.deep_supervision_outputs = []
# only used for upsample_logits
cum_upsample = np.cumprod(np.vstack(self.stage_pool_kernel_size), axis=0).astype(int)
for i, s in enumerate(np.arange(num_stages)[::-1]):
features_below = previous_stage_output_features[s + 1]
features_skip = previous_stage_output_features[s]
self.tus.append(transpconv(features_below, features_skip, previous_stage_pool_kernel_size[s + 1],
previous_stage_pool_kernel_size[s + 1], bias=False))
# after we tu we concat features so now we have 2xfeatures_skip
self.stages.append(ResidualLayer(2 * features_skip, features_skip, previous_stage_conv_op_kernel_size[s],
self.props, num_blocks_per_stage[i], None, block))
if deep_supervision and s != 0:
seg_layer = self.props['conv_op'](features_skip, num_classes, 1, 1, 0, 1, 1, False)
if upscale_logits:
upsample = Upsample(scale_factor=cum_upsample[s], mode=upsample_mode)
self.deep_supervision_outputs.append(nn.Sequential(seg_layer, upsample))
else:
self.deep_supervision_outputs.append(seg_layer)
self.segmentation_output = self.props['conv_op'](features_skip, num_classes, 1, 1, 0, 1, 1, False)
self.tus = nn.ModuleList(self.tus)
self.stages = nn.ModuleList(self.stages)
self.deep_supervision_outputs = nn.ModuleList(self.deep_supervision_outputs)
def forward(self, skips):
# skips come from the encoder. They are sorted so that the bottleneck is last in the list
# what is maybe not perfect is that the TUs and stages here are sorted the other way around
# so let's just reverse the order of skips
skips = skips[::-1]
seg_outputs = []
x = skips[0] # this is the bottleneck
for i in range(len(self.tus)):
x = self.tus[i](x)
x = torch.cat((x, skips[i + 1]), dim=1)
x = self.stages[i](x)
if self.deep_supervision and (i != len(self.tus) - 1):
seg_outputs.append(self.deep_supervision_outputs[i](x))
segmentation = self.segmentation_output(x)
if self.deep_supervision:
seg_outputs.append(segmentation)
return seg_outputs[
::-1] # seg_outputs are ordered so that the seg from the highest layer is first, the seg from
# the bottleneck of the UNet last
else:
return segmentation
@staticmethod
def compute_approx_vram_consumption(patch_size, base_num_features, max_num_features,
num_classes, pool_op_kernel_sizes, num_blocks_per_stage_decoder,
feat_map_mul_on_downscale, batch_size):
"""
This only applies for num_conv_per_stage and convolutional_upsampling=True
not real vram consumption. just a constant term to which the vram consumption will be approx proportional
(+ offset for parameter storage)
:param patch_size:
:param num_pool_per_axis:
:param base_num_features:
:param max_num_features:
:return:
"""
npool = len(pool_op_kernel_sizes) - 1
current_shape = np.array(patch_size)
tmp = (num_blocks_per_stage_decoder[-1] * 2 + 1) * np.prod(
current_shape) * base_num_features + num_classes * np.prod(current_shape)
num_feat = base_num_features
for p in range(1, npool):
current_shape = current_shape / np.array(pool_op_kernel_sizes[p])
num_feat = min(num_feat * feat_map_mul_on_downscale, max_num_features)
num_convs = num_blocks_per_stage_decoder[-(p + 1)] * 2 + 1 + 1 # +1 for transpconv and +1 for conv in skip
print(p, num_feat, num_convs, current_shape)
tmp += num_convs * np.prod(current_shape) * num_feat
return tmp * batch_size
class ResidualUNet(SegmentationNetwork):
use_this_for_batch_size_computation_2D = 858931200.0 # 1167982592.0
use_this_for_batch_size_computation_3D = 727842816.0 # 1152286720.0
default_base_num_features = 24
default_conv_per_stage = (2, 2, 2, 2, 2, 2, 2, 2)
def __init__(self, input_channels, base_num_features, num_blocks_per_stage_encoder, feat_map_mul_on_downscale,
pool_op_kernel_sizes, conv_kernel_sizes, props, num_classes, num_blocks_per_stage_decoder,
deep_supervision=False, upscale_logits=False, max_features=512, initializer=None,
block=BasicResidualBlock):
super(ResidualUNet, self).__init__()
self.conv_op = props['conv_op']
self.num_classes = num_classes
self.encoder = ResidualUNetEncoder(input_channels, base_num_features, num_blocks_per_stage_encoder,
feat_map_mul_on_downscale, pool_op_kernel_sizes, conv_kernel_sizes,
props, default_return_skips=True, max_num_features=max_features, block=block)
self.decoder = ResidualUNetDecoder(self.encoder, num_classes, num_blocks_per_stage_decoder, props,
deep_supervision, upscale_logits, block=block)
if initializer is not None:
self.apply(initializer)
def forward(self, x):
skips = self.encoder(x)
return self.decoder(skips)
@staticmethod
def compute_approx_vram_consumption(patch_size, base_num_features, max_num_features,
num_modalities, num_classes, pool_op_kernel_sizes, num_conv_per_stage_encoder,
num_conv_per_stage_decoder, feat_map_mul_on_downscale, batch_size):
enc = ResidualUNetEncoder.compute_approx_vram_consumption(patch_size, base_num_features, max_num_features,
num_modalities, pool_op_kernel_sizes,
num_conv_per_stage_encoder,
feat_map_mul_on_downscale, batch_size)
dec = ResidualUNetDecoder.compute_approx_vram_consumption(patch_size, base_num_features, max_num_features,
num_classes, pool_op_kernel_sizes,
num_conv_per_stage_decoder,
feat_map_mul_on_downscale, batch_size)
return enc + dec
class FabiansUNet(SegmentationNetwork):
"""
Residual Encoder, Plain conv decoder
"""
use_this_for_2D_configuration = 1244233721.0 # 1167982592.0
use_this_for_3D_configuration = 1230348801.0
default_blocks_per_stage_encoder = (1, 2, 3, 4, 4, 4, 4, 4, 4, 4, 4)
default_blocks_per_stage_decoder = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1)
default_min_batch_size = 2 # this is what works with the numbers above
def __init__(self, input_channels, base_num_features, num_blocks_per_stage_encoder, feat_map_mul_on_downscale,
pool_op_kernel_sizes, conv_kernel_sizes, props, num_classes, num_blocks_per_stage_decoder,
deep_supervision=False, upscale_logits=False, max_features=512, initializer=None,
block=BasicResidualBlock,
props_decoder=None):
super().__init__()
self.conv_op = props['conv_op']
self.num_classes = num_classes
self.encoder = ResidualUNetEncoder(input_channels, base_num_features, num_blocks_per_stage_encoder,
feat_map_mul_on_downscale, pool_op_kernel_sizes, conv_kernel_sizes,
props, default_return_skips=True, max_num_features=max_features, block=block)
props['dropout_op_kwargs']['p'] = 0
if props_decoder is None:
props_decoder = props
self.decoder = PlainConvUNetDecoder(self.encoder, num_classes, num_blocks_per_stage_decoder, props_decoder,
deep_supervision, upscale_logits)
if initializer is not None:
self.apply(initializer)
def forward(self, x):
skips = self.encoder(x)
return self.decoder(skips)
@staticmethod
def compute_approx_vram_consumption(patch_size, base_num_features, max_num_features,
num_modalities, num_classes, pool_op_kernel_sizes, num_conv_per_stage_encoder,
num_conv_per_stage_decoder, feat_map_mul_on_downscale, batch_size):
enc = ResidualUNetEncoder.compute_approx_vram_consumption(patch_size, base_num_features, max_num_features,
num_modalities, pool_op_kernel_sizes,
num_conv_per_stage_encoder,
feat_map_mul_on_downscale, batch_size)
dec = PlainConvUNetDecoder.compute_approx_vram_consumption(patch_size, base_num_features, max_num_features,
num_classes, pool_op_kernel_sizes,
num_conv_per_stage_decoder,
feat_map_mul_on_downscale, batch_size)
return enc + dec
def find_3d_configuration():
# lets compute a reference for 3D
# we select hyperparameters here so that we get approximately the same patch size as we would get with the
# regular unet. This is just my choice. You can do whatever you want
# These default hyperparemeters will then be used by the experiment planner
# since this is more parameter intensive than the UNet, we will test a configuration that has a lot of parameters
# herefore we copy the UNet configuration for Task005_Prostate
cudnn.deterministic = False
cudnn.benchmark = True
patch_size = (20, 320, 256)
max_num_features = 320
num_modalities = 2
num_classes = 3
batch_size = 2
# now we fiddle with the network specific hyperparameters until everything just barely fits into a titanx
blocks_per_stage_encoder = FabiansUNet.default_blocks_per_stage_encoder
blocks_per_stage_decoder = FabiansUNet.default_blocks_per_stage_decoder
initial_num_features = 32
# we neeed to add a [1, 1, 1] for the res unet because in this implementation all stages of the encoder can have a stride
pool_op_kernel_sizes = [[1, 1, 1],
[1, 2, 2],
[1, 2, 2],
[2, 2, 2],
[2, 2, 2],
[1, 2, 2],
[1, 2, 2]]
conv_op_kernel_sizes = [[1, 3, 3],
[1, 3, 3],
[3, 3, 3],
[3, 3, 3],
[3, 3, 3],
[3, 3, 3],
[3, 3, 3]]
unet = FabiansUNet(num_modalities, initial_num_features, blocks_per_stage_encoder[:len(conv_op_kernel_sizes)], 2,
pool_op_kernel_sizes, conv_op_kernel_sizes,
get_default_network_config(3, dropout_p=None), num_classes,
blocks_per_stage_decoder[:len(conv_op_kernel_sizes)-1], False, False,
max_features=max_num_features).cuda()
optimizer = SGD(unet.parameters(), lr=0.1, momentum=0.95)
loss = DC_and_CE_loss({'batch_dice': True, 'smooth': 1e-5, 'do_bg': False}, {})
dummy_input = torch.rand((batch_size, num_modalities, *patch_size)).cuda()
dummy_gt = (torch.rand((batch_size, 1, *patch_size)) * num_classes).round().clamp_(0, 2).cuda().long()
for _ in range(20):
optimizer.zero_grad()
skips = unet.encoder(dummy_input)
print([i.shape for i in skips])
output = unet.decoder(skips)
l = loss(output, dummy_gt)
l.backward()
optimizer.step()
if _ == 0:
torch.cuda.empty_cache()
# that should do. Now take the network hyperparameters and insert them in FabiansUNet.compute_approx_vram_consumption
# whatever number this spits out, save it to FabiansUNet.use_this_for_batch_size_computation_3D
print(FabiansUNet.compute_approx_vram_consumption(patch_size, initial_num_features, max_num_features, num_modalities,
num_classes, pool_op_kernel_sizes,
blocks_per_stage_encoder[:len(conv_op_kernel_sizes)],
blocks_per_stage_decoder[:len(conv_op_kernel_sizes)-1], 2, batch_size))
# the output is 1230348800.0 for me
# I increment that number by 1 to allow this configuration be be chosen
def find_2d_configuration():
# lets compute a reference for 3D
# we select hyperparameters here so that we get approximately the same patch size as we would get with the
# regular unet. This is just my choice. You can do whatever you want
# These default hyperparemeters will then be used by the experiment planner
# since this is more parameter intensive than the UNet, we will test a configuration that has a lot of parameters
# herefore we copy the UNet configuration for Task003_Liver
cudnn.deterministic = False
cudnn.benchmark = True
patch_size = (512, 512)
max_num_features = 512
num_modalities = 1
num_classes = 3
batch_size = 12
# now we fiddle with the network specific hyperparameters until everything just barely fits into a titanx
blocks_per_stage_encoder = FabiansUNet.default_blocks_per_stage_encoder
blocks_per_stage_decoder = FabiansUNet.default_blocks_per_stage_decoder
initial_num_features = 30
# we neeed to add a [1, 1, 1] for the res unet because in this implementation all stages of the encoder can have a stride
pool_op_kernel_sizes = [[1, 1],
[2, 2],
[2, 2],
[2, 2],
[2, 2],
[2, 2],
[2, 2],
[2, 2]]
conv_op_kernel_sizes = [[3, 3],
[3, 3],
[3, 3],
[3, 3],
[3, 3],
[3, 3],
[3, 3],
[3, 3]]
unet = FabiansUNet(num_modalities, initial_num_features, blocks_per_stage_encoder[:len(conv_op_kernel_sizes)], 2,
pool_op_kernel_sizes, conv_op_kernel_sizes,
get_default_network_config(2, dropout_p=None), num_classes,
blocks_per_stage_decoder[:len(conv_op_kernel_sizes)-1], False, False,
max_features=max_num_features).cuda()
optimizer = SGD(unet.parameters(), lr=0.1, momentum=0.95)
loss = DC_and_CE_loss({'batch_dice': True, 'smooth': 1e-5, 'do_bg': False}, {})
dummy_input = torch.rand((batch_size, num_modalities, *patch_size)).cuda()
dummy_gt = (torch.rand((batch_size, 1, *patch_size)) * num_classes).round().clamp_(0, 2).cuda().long()
for _ in range(20):
optimizer.zero_grad()
skips = unet.encoder(dummy_input)
print([i.shape for i in skips])
output = unet.decoder(skips)
l = loss(output, dummy_gt)
l.backward()
optimizer.step()
if _ == 0:
torch.cuda.empty_cache()
# that should do. Now take the network hyperparameters and insert them in FabiansUNet.compute_approx_vram_consumption
# whatever number this spits out, save it to FabiansUNet.use_this_for_batch_size_computation_2D
print(FabiansUNet.compute_approx_vram_consumption(patch_size, initial_num_features, max_num_features, num_modalities,
num_classes, pool_op_kernel_sizes,
blocks_per_stage_encoder[:len(conv_op_kernel_sizes)],
blocks_per_stage_decoder[:len(conv_op_kernel_sizes)-1], 2, batch_size))
# the output is 1244233728.0 for me
# I increment that number by 1 to allow this configuration be be chosen
# This will not fit with 32 filters, but so will the regular U-net. We still use 32 filters in training.
# This does not matter because we are using mixed precision training now, so a rough memory approximation is OK
if __name__ == "__main__":
pass
8.系统整合
1.png9.完整源码&环境部署视频教程&数据集&自定义UI界面
改进Unet的舌头分割系统(源码&教程) (mianbaoduo.com)
10.参考文献
[1]于洋,孔琳,虞闯.自适应粒子群集优化二维OSTU的图像阈值分割算法[J].电子测量与仪器学报.2017,(6).DOI:10.13382/j.jemi.2017.06.002.
[2]姜朔,胡洁,夏春明,等.基于Otsu阈值法与形态学自适应修正的舌像分割方法[J].高技术通讯.2017,(2).DOI:10.3772/j.issn.1002-0470.2017.02.006.
[3]徐蔚波,刘颖,章浩伟.基于区域生长的图像分割研究进展[J].北京生物医学工程.2017,(3).DOI:10.3969/j.issn.1002-3208.2017.03.16.
[4]孙晓峰,彭天强.一种基于全卷积网络的目标检索方法[J].河南工程学院学报(自然科学版).2017,(3).DOI:10.3969/j.issn.1674-330X.2017.03.015.
[5]张培培,王亦红.基于薄膜疵点的改进区域增长分割算法研究[J].信息技术.2017,(8).DOI:10.13274/j.cnki.hdzj.2017.08.040.
[6]刘丹.围绝经期综合征患者舌苔脱落细胞成熟度与肝郁病理的关系[J].中国处方药.2017,(3).
[7]周静波,任永峰,严云洋.基于视觉显著性的非监督图像分割[J].计算机科学.2015,(8).DOI:10.11896/j.issn.1002-137X.2015.8.011.
[8]雷琼.基于Matlab图像分割的研究[J].电子设计工程.2015,(21).DOI:10.3969/j.issn.1674-6236.2015.21.049.
[9]董艳,梁久祯.基于多种色彩空间的像素覆盖分割方法[J].小型微型计算机系统.2015,(8).
[10]覃海松,黄忠朝,赵于前,等.一种新的MLBP-Otsu算法及在舌裂纹分割中的应用[J].计算机工程与应用.2014,(23).DOI:10.3778/j.issn.1002-8331.1404-0115.
网友评论