美文网首页
源码阅读 - ConcurrentHashMap

源码阅读 - ConcurrentHashMap

作者: 烟小花飞花 | 来源:发表于2018-05-29 11:18 被阅读0次

0. ConcurrentHashMap是什么

  • key和value都不能为null,和HashTable一样
  • 默认大小为16,扩容时为2的幂,扩容阈值为0.75*cap
  • 节点相同的标准为hash相等并且k1==k2 || k1.equals(k2)

1. 实现的本质

  • 数组+链表+红黑树
  • volatile + CAS

2. 常用api解析

2.0 重要子类解析

Node节点,数组的元素类型

static class Node<K,V> implements Map.Entry<K,V> {
    final int hash;
    final K key;
    volatile V val;
    volatile Node<K,V> next;
    Node(int hash, K key, V val, Node<K,V> next) {
        this.hash = hash;
        this.key = key;
        this.val = val;
        this.next = next;
    }
}

TreeBin:放在tab[i]位置的节点,当该节点的内容是红黑树时使用,其中:

  • root:红黑树的根节点
  • first:链表的头节点
static final class TreeBin<K,V> extends Node<K,V> {
    TreeNode<K,V> root;
    volatile TreeNode<K,V> first;
    volatile Thread waiter;
    volatile int lockState;
    // values for lockState
    static final int WRITER = 1; // set while holding write lock
    static final int WAITER = 2; // set when waiting for write lock
    static final int READER = 4; // increment value for setting read lock
    ...
}

//红黑树的节点
static final class TreeNode<K,V> extends Node<K,V> {
    TreeNode<K,V> parent;  // red-black tree links
    TreeNode<K,V> left;
    TreeNode<K,V> right;
    TreeNode<K,V> prev;    // needed to unlink next upon deletion
    boolean red;
    TreeNode(int hash, K key, V val, Node<K,V> next,
             TreeNode<K,V> parent) {
        super(hash, key, val, next);
        this.parent = parent;
    }
}

Forwarding节点,扩容时把旧表的tab[i]位置移动到新表后,在旧表的i位置插入该节点。

static final class ForwardingNode<K,V> extends Node<K,V> {
    final Node<K,V>[] nextTable;
    ForwardingNode(Node<K,V>[] tab) {
        super(MOVED, null, null, null);
        this.nextTable = tab;
    }
}

2.1 构造函数

public ConcurrentHashMap()
public ConcurrentHashMap(int initialCapacity)
public ConcurrentHashMap(Map<? extends K, ? extends V> m)
public ConcurrentHashMap(int initialCapacity, float loadFactor)
public ConcurrentHashMap(int initialCapacity, float loadFactor, int concurrencyLevel)

2.2 initTable初始化

初始化只能由一个线程进行,抢占到的线程将sizeCtl设为-1,未抢占到的线程进行yield()操作。初始化完成之后sizeCtl的值为0.75*n

/**
 * Initializes table, using the size recorded in sizeCtl.
 */
private final Node<K,V>[] initTable() {
    Node<K,V>[] tab; int sc;
    while ((tab = table) == null || tab.length == 0) {
        //sc小于0表示未抢占到,自旋
        if ((sc = sizeCtl) < 0)
            Thread.yield(); // lost initialization race; just spin
        //抢占到的线程把sizeCtl置为-1,防止其他线程进入
        else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
            try {
                if ((tab = table) == null || tab.length == 0) {
                    //默认大小为16
                    int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
                    @SuppressWarnings("unchecked")
                    Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
                    //写入table
                    table = tab = nt;
                    //写入sc=0.75*n
                    sc = n - (n >>> 2);
                }
            } finally {
                //table初始化完成后,写入正确的sizeCtl
                sizeCtl = sc;
            }
            break;
        }
    }
    return tab;
}

2.3 数组元素原子操作

arrayBaseOffset获取数组中第一个元素的偏移地址。即数组对象头的偏移距离。
arrayIndexScale获取数组中每一个元素的大小。
2^n = scale,则ASHIFT = n
i<<ASHIFT = i * 2^ASHIFT = i * scale
所以((long)i << ASHIFT) + ABASE=i * scale + ABASE即为内存中元素的真实位置。
使用getObjectVolatile putObjectVolatile是为了保证读写原子性,同时直接读写到内存而不是线程缓存。

...
private static final long ABASE;
private static final int ASHIFT;
...
ABASE = U.arrayBaseOffset(ak);
int scale = U.arrayIndexScale(ak);
if ((scale & (scale - 1)) != 0)
    throw new Error("data type scale not a power of two");
// 2^ASHIFT = scale
ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);

@SuppressWarnings("unchecked")
static final <K,V> Node<K,V> tabAt(Node<K,V>[] tab, int i) {
    return (Node<K,V>)U.getObjectVolatile(tab, ((long)i << ASHIFT) + ABASE);
}
//参数分别为 table数组、index、expect、update
static final <K,V> boolean casTabAt(Node<K,V>[] tab, int i,
                                    Node<K,V> c, Node<K,V> v) {
    return U.compareAndSwapObject(tab, ((long)i << ASHIFT) + ABASE, c, v);
}
static final <K,V> void setTabAt(Node<K,V>[] tab, int i, Node<K,V> v) {
    U.putObjectVolatile(tab, ((long)i << ASHIFT) + ABASE, v);
}

2.4 put方法

/**
 * Maps the specified key to the specified value in this table.
 * Neither the key nor the value can be null.
 *
 * <p>The value can be retrieved by calling the {@code get} method
 * with a key that is equal to the original key.
 *
 * @param key key with which the specified value is to be associated
 * @param value value to be associated with the specified key
 * @return the previous value associated with {@code key}, or
 *         {@code null} if there was no mapping for {@code key}
 * @throws NullPointerException if the specified key or value is null
 */
public V put(K key, V value) {
    return putVal(key, value, false);
}
/** Implementation for put and putIfAbsent */
final V putVal(K key, V value, boolean onlyIfAbsent) {
    //key和value都不能为null
    if (key == null || value == null) throw new NullPointerException();
    //将key的hash无符号右移16位,然后与其本身异或,再将符号位置0
    int hash = spread(key.hashCode());
    int binCount = 0;
    //原子操作失败时自旋使用
    for (Node<K,V>[] tab = table;;) {
        Node<K,V> f; int n, i, fh;
        //如果表是空的,初始化
        if (tab == null || (n = tab.length) == 0)
            tab = initTable();
        //如果tab[i]是空,使用原子操作更新,不加锁
        else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
            if (casTabAt(tab, i, null,
                         new Node<K,V>(hash, key, value, null)))
                //操作成功,退出循环,停止自旋
                break;                   // no lock when adding to empty bin
        }
        //如果当前节点是一个fwd节点,则本线程帮助完成扩容
        else if ((fh = f.hash) == MOVED)
            tab = helpTransfer(tab, f);
        else {
            V oldVal = null;
            //锁住tab[i]位置的第一个元素,相当于锁住tab[i]整个位置
            synchronized (f) {
                //检查tab[i]位置元素有无变化
                if (tabAt(tab, i) == f) {
                    if (fh >= 0) {
                        binCount = 1;
                        for (Node<K,V> e = f;; ++binCount) {
                            K ek;
                            //如果节点已经存储过(key和hash分别相等)
                            if (e.hash == hash &&
                                ((ek = e.key) == key ||
                                 (ek != null && key.equals(ek)))) {
                                oldVal = e.val;
                                //如果onlyIfAbsent为false,更新
                                if (!onlyIfAbsent)
                                    e.val = value;
                                break;
                            }
                            Node<K,V> pred = e;
                            //tab[i]位置的链表上没有元素,则插入到链表最后
                            if ((e = e.next) == null) {
                                pred.next = new Node<K,V>(hash, key,
                                                          value, null);
                                break;
                            }
                        }
                    }
                    //如果f是红黑树的根节点
                    else if (f instanceof TreeBin) {
                        Node<K,V> p;
                        binCount = 2;
                        if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,
                                                       value)) != null) {
                            oldVal = p.val;
                            if (!onlyIfAbsent)
                                p.val = value;
                        }
                    }
                }
            }
            if (binCount != 0) {
                //如果链表上的节点大于等于8个,转成红黑树
                if (binCount >= TREEIFY_THRESHOLD)
                    treeifyBin(tab, i);
                if (oldVal != null)
                    return oldVal;
                break;
            }
        }
    }
    addCount(1L, binCount);
    return null;
}

//将key的hash无符号右移16位,然后与其本身异或,再将符号位置0
//目的是为了减少hash冲突,使分布更均匀
static final int spread(int h) {
    return (h ^ (h >>> 16)) & HASH_BITS;
}

helpTransfer方法,如果正在扩容,则帮助进行扩容:

/**
 * Helps transfer if a resize is in progress.
 */
final Node<K,V>[] helpTransfer(Node<K,V>[] tab, Node<K,V> f) {
    Node<K,V>[] nextTab; int sc;
    if (tab != null && (f instanceof ForwardingNode) &&
        (nextTab = ((ForwardingNode<K,V>)f).nextTable) != null) {
        int rs = resizeStamp(tab.length);
        while (nextTab == nextTable && table == tab &&
               (sc = sizeCtl) < 0) {
            if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
                sc == rs + MAX_RESIZERS || transferIndex <= 0)
                break;
            //多一个线程帮助扩容时,sc+1
            if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1)) {
                transfer(tab, nextTab);
                break;
            }
        }
        return nextTab;
    }
    return table;
}

红黑树节点的put方法:

/**
 * Finds or adds a node.
 * @return null if added
 */
//红黑树中添加节点,如果是添加加点返回null,如果是更新节点返回旧节点
final TreeNode<K,V> putTreeVal(int h, K k, V v) {
    Class<?> kc = null;
    boolean searched = false;
    for (TreeNode<K,V> p = root;;) {
        int dir, ph; K pk;
        //如果根节点是空,新建根节点
        if (p == null) {
            first = root = new TreeNode<K,V>(h, k, v, null, null);
            break;
        }
        //先比较hash
        else if ((ph = p.hash) > h)
            dir = -1;
        else if (ph < h)
            dir = 1;
        //hash相等时比较key
        else if ((pk = p.key) == k || (pk != null && k.equals(pk)))
            return p;
        //hash相等,但是key不等
        else if ((kc == null &&
                  (kc = comparableClassFor(k)) == null) ||
                 (dir = compareComparables(kc, k, pk)) == 0) {
            //如果key没实现Comparable<K>接口,或者compareTo()方法返回0
            if (!searched) {
                TreeNode<K,V> q, ch;
                searched = true;
                if (((ch = p.left) != null &&
                     (q = ch.findTreeNode(h, k, kc)) != null) ||
                    ((ch = p.right) != null &&
                     (q = ch.findTreeNode(h, k, kc)) != null))
                    return q;
            }
            //决胜局,使用系统的hash值比较,若还有相等,dir=-1
            dir = tieBreakOrder(k, pk);
        }
        TreeNode<K,V> xp = p;
        if ((p = (dir <= 0) ? p.left : p.right) == null) {
            //在树中找到插入的位置,链表中放到链表头部
            TreeNode<K,V> x, f = first;
            first = x = new TreeNode<K,V>(h, k, v, f, xp);
            if (f != null)
                f.prev = x;
            if (dir <= 0)
                xp.left = x;
            else
                xp.right = x;
            //如果父节点是黑色,x设为红色
            if (!xp.red)
                x.red = true;
            //如果父节点是红色,进行调整
            else {
                lockRoot();
                try {
                    //按照红黑树的规则进行调整
                    root = balanceInsertion(root, x);
                } finally {
                    unlockRoot();
                }
            }
            break;
        }
    }
    assert checkInvariants(root);
    return null;
}

检查key是否实现了Comparable<Key>接口:

/**
 * Returns x's Class if it is of the form "class C implements
 * Comparable<C>", else null.
 */
static Class<?> comparableClassFor(Object x) {
    if (x instanceof Comparable) {
        Class<?> c; Type[] ts, as; Type t; ParameterizedType p;
        //如果是string,直接返回
        if ((c = x.getClass()) == String.class) // bypass checks
            return c;
        //获取c实现的全部接口
        if ((ts = c.getGenericInterfaces()) != null) {
            for (int i = 0; i < ts.length; ++i) {
                //如果是参数化类型,并且原始类型是Comparable,参数只有一个,且为c
                if (((t = ts[i]) instanceof ParameterizedType) &&
                    ((p = (ParameterizedType)t).getRawType() ==
                     Comparable.class) &&
                    (as = p.getActualTypeArguments()) != null &&
                    as.length == 1 && as[0] == c) // type arg is c
                    return c;
            }
        }
    }
    return null;
}

以指定的节点为根,在树种查找key节点,未找到返回null:

/**
 * Returns the TreeNode (or null if not found) for the given key
 * starting at given root.
 */
final TreeNode<K,V> findTreeNode(int h, Object k, Class<?> kc) {
    if (k != null) {
        TreeNode<K,V> p = this;
        do  {
            int ph, dir; K pk; TreeNode<K,V> q;
            TreeNode<K,V> pl = p.left, pr = p.right;
            if ((ph = p.hash) > h)
                p = pl;
            else if (ph < h)
                p = pr;
            else if ((pk = p.key) == k || (pk != null && k.equals(pk)))
                return p;
            else if (pl == null)
                p = pr;
            else if (pr == null)
                p = pl;
            //如果key实现了Comparable<K>接口,并且compareTo()方法返回值不为0
            else if ((kc != null ||
                      (kc = comparableClassFor(k)) != null) &&
                     (dir = compareComparables(kc, k, pk)) != 0)
                p = (dir < 0) ? pl : pr;
            //递归查找右子树
            else if ((q = pr.findTreeNode(h, k, kc)) != null)
                return q;
            else
                p = pl;
        } while (p != null);
    }
    return null;
}

进行红黑树平衡调整时,先锁住树根:

/**
 * Acquires write lock for tree restructuring.
 */
private final void lockRoot() {
    if (!U.compareAndSwapInt(this, LOCKSTATE, 0, WRITER))
        contendedLock(); // offload to separate method
}
/**
 * Releases write lock for tree restructuring.
 */
private final void unlockRoot() {
    lockState = 0;
}
/**
 * Possibly blocks awaiting root lock.
 */
private final void contendedLock() {
    boolean waiting = false;
    for (int s;;) {
        //lockState为0或WAITER时,抢占
        if (((s = lockState) & ~WAITER) == 0) {
            if (U.compareAndSwapInt(this, LOCKSTATE, s, WRITER)) {
                if (waiting)
                    waiter = null;
                return;
            }
        }
        //如果WAITER位为0,将WAITER位置1
        else if ((s & WAITER) == 0) {
            if (U.compareAndSwapInt(this, LOCKSTATE, s, s | WAITER)) {
                waiting = true;
                waiter = Thread.currentThread();
            }
        }
        else if (waiting)
            LockSupport.park(this);
    }
}

2.5 get方法

/**
 * Returns the value to which the specified key is mapped,
 * or {@code null} if this map contains no mapping for the key.
 *
 * <p>More formally, if this map contains a mapping from a key
 * {@code k} to a value {@code v} such that {@code key.equals(k)},
 * then this method returns {@code v}; otherwise it returns
 * {@code null}.  (There can be at most one such mapping.)
 *
 * @throws NullPointerException if the specified key is null
 */
public V get(Object key) {
    Node<K,V>[] tab; Node<K,V> e, p; int n, eh; K ek;
    int h = spread(key.hashCode());
    if ((tab = table) != null && (n = tab.length) > 0 &&
        (e = tabAt(tab, (n - 1) & h)) != null) {
        //如果tab[i]就是要查找的节点
        if ((eh = e.hash) == h) {
            if ((ek = e.key) == key || (ek != null && key.equals(ek)))
                return e.val;
        }
        //如果是特殊节点,用find方法
        else if (eh < 0)
            return (p = e.find(h, key)) != null ? p.val : null;
        //如果是正常的单链表,往后找
        while ((e = e.next) != null) {
            if (e.hash == h &&
                ((ek = e.key) == key || (ek != null && key.equals(ek))))
                return e.val;
        }
    }
    return null;
}

Node节点调用find方法有3种情况:

  • MOVED: ForwardingNode
  • TREEBIN: TreeBin
  • RESERVED: ReservationNode
    都继承了Node类,在子类中分别重写了find方法

2.6 remove方法

/**
 * Removes the key (and its corresponding value) from this map.
 * This method does nothing if the key is not in the map.
 *
 * @param  key the key that needs to be removed
 * @return the previous value associated with {@code key}, or
 *         {@code null} if there was no mapping for {@code key}
 * @throws NullPointerException if the specified key is null
 */
public V remove(Object key) {
    return replaceNode(key, null, null);
}
/**
 * Implementation for the four public remove/replace methods:
 * Replaces node value with v, conditional upon match of cv if
 * non-null.  If resulting value is null, delete.
 */
final V replaceNode(Object key, V value, Object cv) {
    int hash = spread(key.hashCode());
    for (Node<K,V>[] tab = table;;) {
        Node<K,V> f; int n, i, fh;
        //如果tab是空,或者tab[i]位置为空,结束
        if (tab == null || (n = tab.length) == 0 ||
            (f = tabAt(tab, i = (n - 1) & hash)) == null)
            break;
        //如果tab[i]位置是fwd节点,参与扩容
        else if ((fh = f.hash) == MOVED)
            tab = helpTransfer(tab, f);
        else {
            V oldVal = null;
            boolean validated = false;
            //锁住tab[i]位置
            synchronized (f) {
                if (tabAt(tab, i) == f) {
                    //普通节点
                    if (fh >= 0) {
                        validated = true;
                        for (Node<K,V> e = f, pred = null;;) {
                            K ek;
                            //链表循环往后查找,如果找到
                            if (e.hash == hash &&
                                ((ek = e.key) == key ||
                                 (ek != null && key.equals(ek)))) {
                                V ev = e.val;
                                if (cv == null || cv == ev ||
                                    (ev != null && cv.equals(ev))) {
                                    oldVal = ev;
                                    //如果新值不为空,替换
                                    if (value != null)
                                        e.val = value;
                                    //如果不是tab[i]位置的第一个节点,删除节点
                                    else if (pred != null)
                                        pred.next = e.next;
                                    //如果是tab[i]位置的第一个节点,原子替换
                                    else
                                        setTabAt(tab, i, e.next);
                                }
                                break;
                            }
                            //往链表后查找
                            pred = e;
                            if ((e = e.next) == null)
                                break;
                        }
                    }
                    //如果是红黑树
                    else if (f instanceof TreeBin) {
                        validated = true;
                        TreeBin<K,V> t = (TreeBin<K,V>)f;
                        TreeNode<K,V> r, p;
                        //如果找到节点
                        if ((r = t.root) != null &&
                            (p = r.findTreeNode(hash, key, null)) != null) {
                            V pv = p.val;
                            if (cv == null || cv == pv ||
                                (pv != null && cv.equals(pv))) {
                                oldVal = pv;
                                //如果新值不为空,替换
                                if (value != null)
                                    p.val = value;
                                //否则删除节点
                                else if (t.removeTreeNode(p))
                                    setTabAt(tab, i, untreeify(t.first));
                            }
                        }
                    }
                }
            }
            if (validated) {
                if (oldVal != null) {
                    if (value == null)
                        addCount(-1L, -1);
                    return oldVal;
                }
                break;
            }
        }
    }
    return null;
}

2.7 扩容方法

如果tab[i]位置的节点超过8个,转换成红黑树

/**
 * Replaces all linked nodes in bin at given index unless table is
 * too small, in which case resizes instead.
 */
private final void treeifyBin(Node<K,V>[] tab, int index) {
    Node<K,V> b; int n, sc;
    if (tab != null) {
        //如果长度小于64,扩容
        if ((n = tab.length) < MIN_TREEIFY_CAPACITY)
            tryPresize(n << 1);
        else if ((b = tabAt(tab, index)) != null && b.hash >= 0) {
            synchronized (b) {
                if (tabAt(tab, index) == b) {
                    TreeNode<K,V> hd = null, tl = null;
                    //转为双向链表
                    for (Node<K,V> e = b; e != null; e = e.next) {
                        TreeNode<K,V> p =
                            new TreeNode<K,V>(e.hash, e.key, e.val,
                                              null, null);
                        if ((p.prev = tl) == null)
                            hd = p;
                        else
                            tl.next = p;
                        tl = p;
                    }
                    //把红黑树放到tab[i]位置
                    setTabAt(tab, index, new TreeBin<K,V>(hd));
                }
            }
        }
    }
}

扩大table的长度:

/**
 * Tries to presize table to accommodate the given number of elements.
 *
 * @param size number of elements (doesn't need to be perfectly accurate)
 */
private final void tryPresize(int size) {
    int c = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY :
        tableSizeFor(size + (size >>> 1) + 1);
    int sc;
    while ((sc = sizeCtl) >= 0) {
        Node<K,V>[] tab = table; int n;
        //未初始化,进行初始化
        if (tab == null || (n = tab.length) == 0) {
            n = (sc > c) ? sc : c;
            if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
                try {
                    if (table == tab) {
                        @SuppressWarnings("unchecked")
                        Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
                        table = nt;
                        sc = n - (n >>> 2);
                    }
                } finally {
                    sizeCtl = sc;
                }
            }
        }
        else if (c <= sc || n >= MAXIMUM_CAPACITY)
            break;
        else if (tab == table) {
            int rs = resizeStamp(n);
            if (sc < 0) {
                Node<K,V>[] nt;
                if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
                    sc == rs + MAX_RESIZERS || (nt = nextTable) == null ||
                    transferIndex <= 0)
                    break;
                //多一个线程进行扩容操作,sc+1
                if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1))
                    transfer(tab, nt);
            }
            //实际进行扩容的路径
            else if (U.compareAndSwapInt(this, SIZECTL, sc,
                                         (rs << RESIZE_STAMP_SHIFT) + 2))
                transfer(tab, null);
        }
    }
}

把双向链表转为红黑树:

/**
 * Creates bin with initial set of nodes headed by b.
 */
TreeBin(TreeNode<K,V> b) {
    super(TREEBIN, null, null, null);
    this.first = b;
    TreeNode<K,V> r = null;
    for (TreeNode<K,V> x = b, next; x != null; x = next) {
        next = (TreeNode<K,V>)x.next;
        x.left = x.right = null;
        //如果根为空
        if (r == null) {
            x.parent = null;
            x.red = false;
            r = x;
        }
        else {
            K k = x.key;
            int h = x.hash;
            Class<?> kc = null;
            for (TreeNode<K,V> p = r;;) {
                int dir, ph;
                K pk = p.key;
                //确定节点x的插入方向
                if ((ph = p.hash) > h)
                    dir = -1;
                else if (ph < h)
                    dir = 1;
                else if ((kc == null &&
                          (kc = comparableClassFor(k)) == null) ||
                         (dir = compareComparables(kc, k, pk)) == 0)
                    dir = tieBreakOrder(k, pk);
                    TreeNode<K,V> xp = p;
                //插入节点x
                if ((p = (dir <= 0) ? p.left : p.right) == null) {
                    x.parent = xp;
                    if (dir <= 0)
                        xp.left = x;
                    else
                        xp.right = x;
                    //调整红黑树
                    r = balanceInsertion(r, x);
                    break;
                }
            }
        }
    }
    this.root = r;
    assert checkInvariants(root);
}

并行扩容transfer方法:

  • 每个线程每次处理stride个元素。
  • 索引ibound时,本线程本次处理完成,i0时,整体数组处理完成,更新tablesizeCtl的值。
  • 多一个线程进行扩容操作时,sc+1,完成后每个线程sc-1
/**
 * Moves and/or copies the nodes in each bin to new table. See
 * above for explanation.
 */
private final void transfer(Node<K,V>[] tab, Node<K,V>[] nextTab) {
    int n = tab.length, stride;
    //stride最小为16
    if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
        stride = MIN_TRANSFER_STRIDE; // subdivide range
    if (nextTab == null) {            // initiating
        try {
            //新表扩容的大小为2*n
            @SuppressWarnings("unchecked")
            Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n << 1];
            nextTab = nt;
        } catch (Throwable ex) {      // try to cope with OOME
            sizeCtl = Integer.MAX_VALUE;
            return;
        }
        nextTable = nextTab;
        transferIndex = n;
    }
    int nextn = nextTab.length;
    ForwardingNode<K,V> fwd = new ForwardingNode<K,V>(nextTab);
    boolean advance = true;
    boolean finishing = false; // to ensure sweep before committing nextTab
    for (int i = 0, bound = 0;;) {
        Node<K,V> f; int fh;
        while (advance) {
            int nextIndex, nextBound;
            //判断是否到本线程处理的边界
            if (--i >= bound || finishing)
                advance = false;
            //判断是否到table的边界
            else if ((nextIndex = transferIndex) <= 0) {
                i = -1;
                advance = false;
            }
            //读取本线程本次需要处理的部分,即i到bound部分
            else if (U.compareAndSwapInt
                     (this, TRANSFERINDEX, nextIndex,
                      nextBound = (nextIndex > stride ?
                                   nextIndex - stride : 0))) {
                bound = nextBound;
                i = nextIndex - 1;
                advance = false;
            }
        }
        //i<0说明table数组整体处理完了
        if (i < 0 || i >= n || i + n >= nextn) {
            int sc;
            //结束处理,赋值table和sizeCtl
            if (finishing) {
                nextTable = null;
                table = nextTab;
                sizeCtl = (n << 1) - (n >>> 1);
                return;
            }
            if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, sc - 1)) {
                if ((sc - 2) != resizeStamp(n) << RESIZE_STAMP_SHIFT)
                    return;
                finishing = advance = true;
                i = n; // recheck before commit
            }
        }
        else if ((f = tabAt(tab, i)) == null)
            advance = casTabAt(tab, i, null, fwd);
        else if ((fh = f.hash) == MOVED)
            advance = true; // already processed
        else {
            //锁住tab[i]位置的节点f
            synchronized (f) {
                if (tabAt(tab, i) == f) {
                    Node<K,V> ln, hn;
                    //如果是链表节点
                    if (fh >= 0) {
                        int runBit = fh & n;
                        Node<K,V> lastRun = f;
                        for (Node<K,V> p = f.next; p != null; p = p.next) {
                            int b = p.hash & n;
                            if (b != runBit) {
                                runBit = b;
                                lastRun = p;
                            }
                        }
                        //循环完成后lastRun后面的节点与lastRun在新table中在一个格子
                        //感觉这一趟循环没有什么意义啊?反正后面还要循环一趟
                        if (runBit == 0) {
                            ln = lastRun;
                            hn = null;
                        }
                        else {
                            hn = lastRun;
                            ln = null;
                        }
                        //重新遍历tab[i]位置的链表,第n位为0的放到ln头部,为1的放到hn头部
                        for (Node<K,V> p = f; p != lastRun; p = p.next) {
                            int ph = p.hash; K pk = p.key; V pv = p.val;
                            if ((ph & n) == 0)
                                ln = new Node<K,V>(ph, pk, pv, ln);
                            else
                                hn = new Node<K,V>(ph, pk, pv, hn);
                        }
                        //把ln和hn分别放到新表的i和i+n位置
                        setTabAt(nextTab, i, ln);
                        setTabAt(nextTab, i + n, hn);
                        //旧表的i位置标为MOVED
                        setTabAt(tab, i, fwd);
                        advance = true;
                    }
                    //如果是红黑树节点
                    else if (f instanceof TreeBin) {
                        TreeBin<K,V> t = (TreeBin<K,V>)f;
                        TreeNode<K,V> lo = null, loTail = null;
                        TreeNode<K,V> hi = null, hiTail = null;
                        int lc = 0, hc = 0;
                        //红黑树的所有节点同时也在一个双向链表上
                        for (Node<K,V> e = t.first; e != null; e = e.next) {
                            int h = e.hash;
                            TreeNode<K,V> p = new TreeNode<K,V>
                                (h, e.key, e.val, null, null);
                            //第n位为0时放在lo后
                            if ((h & n) == 0) {
                                if ((p.prev = loTail) == null)
                                    lo = p;
                                else
                                    loTail.next = p;
                                loTail = p;
                                ++lc;
                            }
                            //第n位为1时放在hi后
                            else {
                                if ((p.prev = hiTail) == null)
                                    hi = p;
                                else
                                    hiTail.next = p;
                                hiTail = p;
                                ++hc;
                            }
                        }
                        //新的链表如果少于6个,转为单链表,否则转为红黑树,如果另外一个链是空的,直接把原来的t放过去
                        ln = (lc <= UNTREEIFY_THRESHOLD) ? untreeify(lo) :
                            (hc != 0) ? new TreeBin<K,V>(lo) : t;
                        hn = (hc <= UNTREEIFY_THRESHOLD) ? untreeify(hi) :
                            (lc != 0) ? new TreeBin<K,V>(hi) : t;
                        //把ln和hn分别放入新表的i和i+n位置
                        setTabAt(nextTab, i, ln);
                        setTabAt(nextTab, i + n, hn);
                        //旧表的i位置设为MOVED
                        setTabAt(tab, i, fwd);
                        advance = true;
                    }
                }
            }
        }
    }
}

3. 总结

  • 默认大小16,每次扩容时为原来的2倍,扩容阈值为0.75*n
  • 指定初始化大小时,容量为大于指定数的最小的2的幂,由tableSizeFor()方法实现
  • table长度大于64,并且单个位置的节点数大于8个,会将该位置转为红黑树,否则只是扩大table的长度
  • 在进行写操作时,每次只锁tab[i]位置,不是整表上锁
  • sizeCtl比较难理解
    • -1是表示在初始化,初始化只能由一个线程进行,其他线程yield()操作,在initTable()方法中
    • 0x80xx00xx时(即resizeStamp(n)<<RESIZE_STAMP_SHIFT+2),表示在扩容操作,在tryPresize()方法中
    • 0x80xx00xx时(上种情况下+n),表示并发扩容操作,每多一个线程,进行sizeCtl+1操作,在putVal() remove()方法中,节点为REMOVED情况下,完成扩容操作后,每退出一个线程,进行sizeCtl-1操作,直到(sc - 2) == resizeStamp(n) << RESIZE_STAMP_SHIFT,表示最后一个线程完成,在transfer()方法中

4. 参考

  1. ConcurrentHashMap源码build 1.8.0_121-b13版本
  2. Java7/8 中的 HashMap 和 ConcurrentHashMap 全解析
  3. ConcurrentHashMap总结
  4. 二叉树 - 红黑树

相关文章

网友评论

      本文标题:源码阅读 - ConcurrentHashMap

      本文链接:https://www.haomeiwen.com/subject/khbcdftx.html