美文网首页
luogu P1551 亲戚(并查集入门)

luogu P1551 亲戚(并查集入门)

作者: 斈棟Z | 来源:发表于2018-08-09 14:23 被阅读0次

这是一个并查集模板。

说一下并查集,虽然我也是刚刚学会没几天。。。

并查集是个树形结构的数据结构,主要用于合并两个不相交的集合;

首先是初始化,其中的f数组表示第i点的父亲


for(int i=1;i<=n;i++)f[i] = i;

并查集分为合并与查询,我习惯写成merge(合并),query(查询)

合并的话,首先调用query函数去查询两点的祖先节点,如果不是同一祖先,两个集合就没有关联,然后就将其祖先节点所代表的集合合并,(我所用的rand是让合并的方向打乱,不易被卡),好像还有按秩合并,然而我还不会,以后再补这个锅吧,,,


void merge(int x,int y){

    int f1 = query(x);

    int f2 = query(y);

    if(f1 != f2){

        if(rand()%2)f[f1] = f2;

        else f[f2] = f1;

    }

    return;

}

接下来就是query(查询操作),不断递归查询父亲节点,直到找到祖先节点,后面的是路径压缩,因为寻找路途上的所有点的祖先节点相同,所以在返回的时候把每个点去都放入同一集合,可以极大的缩短查询时间,写并查集的话一定带上路径压缩,不然会被卡。不过好像有卡路径压缩的题,只是听dalao说过,具体问题具体分析吧。


int query(int x){

    if(x == f[x])return x;

    else return f[x] = query(f[x]);//路径压缩

}

下面是这道题,就是一个并查集根据题目要求做就可以了

题目背景

若某个家族人员过于庞大,要判断两个是否是亲戚,确实还很不容易,现在给出某个亲戚关系图,求任意给出的两个人是否具有亲戚关系。

题目描述

规定:x和y是亲戚,y和z是亲戚,那么x和z也是亲戚。如果x,y是亲戚,那么x的亲戚都是y的亲戚,y的亲戚也都是x的亲戚。

输入输出格式

输入格式:

第一行:三个整数n,m,p,(n<=5000,m<=5000,p<=5000),分别表示有n个人,m个亲戚关系,询问p对亲戚关系。

以下m行:每行两个数Mi,Mj,1<=Mi,Mj<=N,表示Mi和Mj具有亲戚关系。

接下来p行:每行两个数Pi,Pj,询问Pi和Pj是否具有亲戚关系。

输出格式:

P行,每行一个’Yes’或’No’。表示第i个询问的答案为“具有”或“不具有”亲戚关系。

输入输出样例

输入样例#1: 复制

6 5 3

1 2

1 5

3 4

5 2

1 3

1 4

2 3

5 6

输出样例#1: 复制

Yes

Yes

No

附AC代码:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cstdlib>

using namespace std;
const int maxn = 500521;
int n,m,p;
int mi;
int mj;
int pi;
int pj;
int f[maxn];
inline int read(){//读入优化
    int x=0;int f=1;char c=getchar();
    while(c<'0'||c>'9'){
        if(c=='-')f=-f;
        c=getchar();
    }
    while(c<='9'&&c>='0'){
        x=x*10+c-'0';
        c=getchar();
    }
    return x*f;
} 
int query(int x){//查询操作
    if(x == f[x])return x;
    else return f[x] = query(f[x]);//路径压缩
}
void merge(int x,int y){//合并操作
    int f1 = query(x);
    int f2 = query(y);
    if(f1 != f2){
        if(rand()%2)f[f1] = f2;
        else f[f2] = f1;
    }
    return;
}
int main(){
    n = read();
    m = read();
    p = read();
    for(int i=1;i<=n;i++)f[i] = i;//初始化,不能丢
    for(int i=1;i<=m;i++){
        mi = read();
        mj = read();
        merge(mi,mj);
    }
    for(int i=1;i<=p;i++){
        pi = read();
        pj = read();
        if(query(pi) == query(pj)){
            printf("Yes\n");
        }
        else printf("No\n");
    }
    
    return 0;
}

相关文章

  • luogu P1551 亲戚(并查集入门)

    这是一个并查集模板。 说一下并查集,虽然我也是刚刚学会没几天。。。 并查集是个树形结构的数据结构,主要用于合并两个...

  • 2020-06-25 亲戚

    题目:https://www.luogu.com.cn/problem/P1551 知识点: 并查集

  • 并查集入门使用

    本文参考自《算法笔记》并查集篇 并查集的定义 什么是并查集?并查集可以理解为是一种维护数据集合的结构。名字中并查集...

  • markdown学习

    #并查集 ##并查集的定义 ##并查集的操作

  • 数据结构 | 并查集入门模板题——HDU1232

    写在前面: 前面讲了并查集的入门,现在我们来具体看一道题目,练练代码的书写,加深对并查集的理解。 HDU1232—...

  • 算法模板(四)并查集

    并查集 路径压缩并查集

  • 并查集

    https://zh.visualgo.net/ufds [傻子都能看懂的并查集入门](https://segme...

  • 并查集练习

    并查集 参考《算法笔记》 三要素:并,查,集。 并差集与一个算法有关,kruskal算法,就可通过并查集实现。 1...

  • 并查集

    并查集 并查集是什么 并查集是一种用来管理元素分组情况的数据结构,并查集可以高效地进行如下操作: 查询元素a和元素...

  • 数据结构与算法(十二)并查集(Union Find)

    本文主要包括以下内容: 并查集的概念 并查集的操作 并查集的实现和优化Quick FindQuick Union基...

网友评论

      本文标题:luogu P1551 亲戚(并查集入门)

      本文链接:https://www.haomeiwen.com/subject/kioqbftx.html